Article contents
Effect of bovine age on the proliferative activity, global DNA methylation, relative telomere length and telomerase activity of granulosa cells
Published online by Cambridge University Press: 27 July 2011
Summary
Granulosa cells influence the growth and acquisition of the developmental competence of oocytes. We investigated the effects of ageing on the proliferative activity, global genomic DNA methylation, relative telomere length and telomerase activity of bovine granulosa cells. The proliferative activity of cells was examined by bromodeoxyuridine (BrdU) assay, genomic DNA methylation was examined by enzyme-linked immunosorbent assay (ELISA), and relative telomere length and telomerase activity were examined by real-time polymerase chain reaction. We first compared the proliferative activity of the granulosa cells of the medium follicles between in dominant phase ovaries and growth phase ovaries. We observed that the proliferative activity of the granulosa cells of dominant phase ovaries was significantly lower than those of growth phase ovaries. In addition, the proliferative activity of granulosa cells was inversely associated with follicular size. Based on the results, we used granulosa cells harvested from the medium follicles (3–5 mm in diameter) on the surfaces of the dominant phase ovaries collected from cows at a slaughterhouse. The proliferative activity of the granulosa cells harvested from the ovaries of old cows (N = 8; average age 165.1 months) was lower than that of the cells from young cows (N = 8; average age 30.9 months). Global loss of cytosine methylation was detected in the granulosa cells of old cows (N = 12; average age 141.0 months) compared with young cows (N = 15; average age 27.4 months). Although the relative telomere lengths of cumulus cells were similar in the two age groups, the relative telomere lengths and telomerase activity of the granulosa cells from old cows (N = 17 and 9; average age, 164.6 and 151.3 months, respectively) tended to be shorter than those of the cells from young cows (N = 17 and 10; average age 30.6 and 28.1 months, respectively); however, this difference was not significant p = 0.09 and 0.053, respectively). In conclusion, the proliferative activity and genomic global DNA methylation significantly decreased, and the relative telomere lengths and telomerase activity of granulosa cells tended to be shorter with the age of donor cows.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 24
- Cited by