Published online by Cambridge University Press: 17 December 2020
The aim of this study was to investigate the effect of cyanocobalamin supplementation on in vitro maturation (IVM), in vitro fertilization (IVF), and subsequent embryonic development competence to the blastocyst stage, and in vitro development of mouse 2-cell embryos. Cumulus cells were prepared from mouse cumulus–oocyte complexes (COCs) and incubated for 24 h in an in vitro culture (IVC) medium that contained different concentrations of cyanocobalamin (100, 200, 300 or 500 pM). We collected 2-cell embryos from superovulated NMRI mice and cultured them in the same concentrations of cyanocobalamin (100, 200, 300 or 500 pM). After 42 h of IVM, we observed significantly increased oocyte maturation in the 200 pM cyanocobalamin-treated group compared with the control group (P < 0.0001). Mature oocytes cultured in 200 pM cyanocobalamin were fertilized and cultured in IVC medium with cyanocobalamin (100, 200, 300 or 500 pM) during early embryogenesis. The matured oocytes that were cultured in 200 pM cyanocobalamin had significantly higher 2-cell development rates compared with the control oocytes (P < 0.01). Embryos obtained from in vitro mature oocytes and in vivo fertilized oocytes that were cultured in 200 pM cyanocobalamin had significantly greater frequencies of development to the blastocyst stage and a significant reduction in 2-cell blocked and degenerated embryos compared with the control embryos (P < 0.0001). Embryos derived from oocytes fertilized in vivo with 200 pM cyanocobalamin had a higher percentage of blastocyst embryos compared with those derived from matured oocytes cultured in vitro (P < 0.0001). These finding demonstrated that the effects of cyanocobalamin on oocyte maturation, fertilization, and embryo development in mice depend on the concentration used in IVC medium.