Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:06:17.310Z Has data issue: false hasContentIssue false

The effect of interaction between macromolecule supplement and oxygen tension on bovine oocytes and embryos cultured in vitro

Published online by Cambridge University Press:  22 May 2009

G.Z. Mingoti*
Affiliation:
School of Veterinary Medicine, Department of Animal Health, UNESP, Rua Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil.
V.S.D. Caiado Castro
Affiliation:
School of Agricultural and Veterinary Sciences, Department of Preventive Veterinary Medicine and Animal Reproduction, UNESP, 14884-900, Jaboticabal, SP, Brazil.
S.C. Méo
Affiliation:
Cattle-Southeast, Brazilian Agricultural Research Corporation, EMBRAPA, 13560-970, São Carlos, SP, Brazil.
L.S.S. Barretto
Affiliation:
School of Agricultural and Veterinary Sciences, Department of Preventive Veterinary Medicine and Animal Reproduction, UNESP, 14884-900, Jaboticabal, SP, Brazil.
J.M. Garcia
Affiliation:
School of Agricultural and Veterinary Sciences, Department of Preventive Veterinary Medicine and Animal Reproduction, UNESP, 14884-900, Jaboticabal, SP, Brazil.
*
All correspondence to: G.Z. Mingoti. School of Veterinary Medicine, Department of Animal Health, UNESP, Rua Clóvis Pestana, 793, 16050-680, Araçatuba, São Paulo, Brazil. Tel: +55 18 3636 1375; Fax: +55 18 3622 8451; e-mail: gmingoti@fmva.unesp.br

Summary

Aiming to improve in vitro production of bovine embryos and to obtain supplements to replace serum for in vitro maturation (IVM), this study evaluated the effects of macromolecular supplementation of IMV medium (bovine serum albumin – BSA, polyvinyl alcohol – PVA, polyvinyl pyrrolidone – PVP, Ficoll, KnockoutSR, or fetal calf serum – FCS) and oxygen tension [5% CO2 in air (20% O2) or 5% CO2, 5% O2 and 90% N2 (5% O2)] on oocyte maturation and embryo development. Nuclear progression to germinal vesicle breakdown, metaphase I and metaphase II stages were evaluated and overall results revealed that undefined (FCS) and semi-defined (BSA) media gave better results at 20% O2 and defined media (PVA, PVP and Ficoll) at 5% O2. Independent of macromolecule supplement, IVM at 20% O2 was considered optimal for nuclear maturation. To evaluate embryo development, oocytes matured in the previously described conditions were fertilized and cultured at the same oxygen tension used for IVM and assessed for cleavage (43.0 to 74.8%) and development to morulae (16.4 to 33.8%), blastocyst (7.7 to 52.9%) and hatched blastocyst (9.6 to 48.1%). Apart from oxygen tension, all treatments, except Knockout (22.7%), gave similar results for blastocyst development (26.5 to 38.7%). Independently of macromolecule supplement, higher development rates were obtained in an oxygen tension of 20% O2 (67.4% cleavage, 29.2% morulae, 40.8% blastocyst and 34.0% hatched blastocyst) when compared with 5% O2 (52.5, 21.8, 18.2 and 15.6%, respectively). This study indicates that BSA, PVA, PVP and Ficoll can replace serum during IVM and that the optimal atmospheric condition for in vitro production of bovine embryos is 5% CO2 and 20% O2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A. & Sirard, M.A. (2002). Effect of the absence or presence of various protein supplements on further development of bovine oocyte during in vitro maturation. Biol. Reprod. 66, 901–5.CrossRefGoogle ScholarPubMed
Batt, P.A., Gardner, D.K. & Camero, A.W. (1991). Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod. Fertil. Dev. 3, 601–7.CrossRefGoogle ScholarPubMed
Bavister, B.D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91148.CrossRefGoogle Scholar
Betterbed, B. & Wright, R.W. Jr. (1985). Development of one-cell ovine embryos in two culture media under two gas atmospheres. Theriogenology 23, 547–53.CrossRefGoogle ScholarPubMed
Brackett, B.G. & Zuelke, K.A. (1993). Analysis of factors involved in the in vitro production of bovine embryos. Theriogenology 39, 4364.CrossRefGoogle Scholar
Camous, S., Heyman, Y., Méziou, W. & Ménézo, Y. (1984). Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J. Reprod. Fertil. 72, 479–85.CrossRefGoogle ScholarPubMed
Carolan, C., Lonergan, P., Van Langenonckt, A. & Mermillod, P. (1995). Factors affecting bovine embryo development in synthetic oviduct fluid following oocyte maturation and fertilization in vitro. Theriogenology 43, 1115–28.CrossRefGoogle ScholarPubMed
Castro e Paula, L.A. & Hansen, P.J. (2007). Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology 68, 763–70.CrossRefGoogle ScholarPubMed
Checura, C.M. & Seidel, G.E. Jr. (2007). Effect of macromolecules in solutions for vitrification of mature bovine oocytes. Theriogenology 67, 919–30.CrossRefGoogle ScholarPubMed
Chung, J.T., Tosca, L., Huang, T.H., Xu, L., Niwa, K. & Chian, R.C. (2007). Effect of polyvinylpyrrolidone on bovine oocyte maturation in vitro and subsequent fertilization and embryonic development. Reprod. BioMed. Online 15, 198207.CrossRefGoogle ScholarPubMed
Corrêa, G.A., Rumpf, R., Mundim, T.C.D., Franco, M.M. & Dode, M.A.N. (2008). Oxygen tension during in vitro culture of bovine embryos: effect in production and expression of genes related to oxidative stress. Anim. Reprod. Sci. 104, 132–42.CrossRefGoogle ScholarPubMed
Dalvit, G.C., Cetica, P.D., Pintos, L.N. & Beconi, M.T. (2005). Reactive oxygen species in bovine embryo in vitro production. Biocell 29, 209–12.CrossRefGoogle ScholarPubMed
Eppig, J.J. (1996). Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 8, 485–9.CrossRefGoogle ScholarPubMed
Eppig, J.J. & Wigglesworth, K. (1995). Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol. Reprod. Dev. 42, 447–56.CrossRefGoogle ScholarPubMed
Fukui, Y., Kikuchi, Y., & Kondo, H., Mizushima, S. (2000). Fertilizability and developmental capacity of individually cultured bovine oocytes. Theriogenology 53, 1553–65.CrossRefGoogle ScholarPubMed
Goldsborough, M.D., Tilkins, M.L., Price, P.J., Lobo-Alfonso, J., Morrison, J.R., Stevens, M.E., Meneses, J., Pedersen, R., Koller, B. & Latour, A. (1998). Serum-free culture of murine embryonic stem (ES) cells. Focus (Gibco) 20, 812.Google Scholar
Gosden, R.G. & Byatt-Smith, J.G. (1986). Oxygen concentration gradient across the ovarian follicular epithelium: model, predictions and implications. Hum. Reprod. 1, 65–8.CrossRefGoogle ScholarPubMed
Gutiérrez-Adán, A., Lonergan, P., Rizos, D., Ward, F.A., Boland, M.P, Pintado, B. & De La Fuente, J. (2001). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 55, 1117–26.CrossRefGoogle ScholarPubMed
Harvey, A.J. (2007). The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim. Reprod. Sci. 98, 113–28.CrossRefGoogle ScholarPubMed
Hashimoto, S., Minami, N., Takakura, R., Yamada, M., Imai, H. & Kashima, N. (2000). Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol. Reprod. Dev. 57, 353–60.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Krisher, R.L., Lane, M. & Bavister, B.D. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–52.CrossRefGoogle ScholarPubMed
Kuleshova, L.L., Macfarlane, D.R., Trounson, A.O. & Shaw, J.M. (1999). Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology 38, 119–30.CrossRefGoogle Scholar
Mass, D.H., Storey, B.T. & Mastroianni, L. Jr. (1976). Oxygen tension in the oviduct of rhesus monkey (Macaca mulatta). Fertil. Steril. 27, 1312–17.CrossRefGoogle Scholar
Mastromonaco, G.F., Semple, E., Robert, C., Rho, G.J., Betts, D.H. & King, W.A. (2004). Different culture media requirements of IVF and nuclear transfer bovine embryos. Reprod. Domest. Anim. 39, 462–7.CrossRefGoogle ScholarPubMed
McKiernan, S.H. & Bavister, B.D. (1992). Different lots of bovine serum albumin inhibit or stimulate in vitro development of hamster embryos. In Vitro Cell. Dev. Biol. 28A, 154–6.CrossRefGoogle ScholarPubMed
Moore, K., Rodriguez-Sallaberry, C.J., Kramer, J.M., Johnson, S., Wroclawska, E., Goicoa, S. & Niasari-Naslaji, A. (2007). In vitro production of bovine embryos in medium supplemented with a serum replacer: effects on blastocyst development, cryotolerance and survival to term. Theriogenology 68, 1316–25.CrossRefGoogle ScholarPubMed
Nakao, H. & Nakatsuji, N. (1990). Effects of co-culture, medium components and gas phase on in vitro culture of in vitro matured and in vitro fertilized bovine embryos. Theriogenology 33, 591600.CrossRefGoogle ScholarPubMed
Noda, Y., Goto, Y., Umaoka, Y., Shiotani, M., Nakayama, T. & Mori, T. (1994). Culture of human embryos in alpha modification of Eagle's medium under low oxygen tension and low illumination. Fertil. Steril. 62, 1022–7.CrossRefGoogle ScholarPubMed
Orsi, N.M. & Leese, H.J. (2004). Amino acid metabolism of preimplantation bovine embryos cultured with bovine serum albumin or polyvinyl alcohol. Theriogenology 61, 561–72.CrossRefGoogle ScholarPubMed
Oyamada, T. & Fukui, Y. (2004). Oxygen tension and medium supplements for in vitro maturation of bovine oocytes cultured individually in a chemically defined medium. J. Reprod. Dev. 50, 107–17.CrossRefGoogle Scholar
Papis, K., Poleszczuk, O., Wenta-Muchalska, E. & Modlinski, J.A. (2007). Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res. 43, 321–6.CrossRefGoogle ScholarPubMed
Rose, T.A. & Bavister, B.D. (1992). Effect of oocyte maturation medium on in vitro development of in vitro fertilized bovine embryos. Mol. Reprod. Dev. 31, 727.CrossRefGoogle ScholarPubMed
Sagirkaya, H., Misirlioglu, M., Kaya, A., First, N.L., Parrish, J.J. & Memili, E. (2007). Developmental potential of bovine oocytes cultured in different maturation and culture conditions. Anim. Reprod. Sci. 101, 225–40.CrossRefGoogle ScholarPubMed
Sirard, M.A & Blondin, P. (1996). Oocyte maturation and IVF in cattle. Anim. Reprod. Sci. 42, 417–26.CrossRefGoogle Scholar
Sirard, M.A., Florman, H.M., Leibfried-Rutledge, M.L., Barnes, F.L., Sims, M.L. & First, N.L. (1989). Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 40, 1257–63.CrossRefGoogle ScholarPubMed
Smitz, J., Cortvrindt, R. & Van Steirteghem, A.C. (1996). Normal oxygen atmosphere is essential for the solitary long-term culture of early preantral mouse follicles. Mol. Reprod. Dev. 45, 466–75.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Stein, A. (2007). Decreasing variability in your cell culture. Biotechniques 43, 228–9.CrossRefGoogle ScholarPubMed
Stock, A.E., Woodruff, T.K. & Smith, L.C. (1997). Effects of inhibin A and activin A during in vitro maturation of bovine oocytes in hormone- and serum-free medium. Biol. Reprod. 56, 1559–64.CrossRefGoogle ScholarPubMed
Thibault, C., Szöllösi, D. & Gérard, M. (1987). Mammalian oocyte maturation. Reprod. Nutr. Dev. 27, 865–96.CrossRefGoogle ScholarPubMed
Thompson, J.G., Simpson, A.C., Pugh, P.A., Donnelly, P.E. & Tervit, H.R. (1990). Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573578.CrossRefGoogle ScholarPubMed
Voelkel, S.A. & Hu, Y.X. (1992). Effect of gas atmosphere on the development of one cell bovine embryos in two culture systems. Theriogenology 37, 1117–31.CrossRefGoogle ScholarPubMed
Webster, H.L. (1982). Colloid osmotic pressure: theoretical aspects and background. Clin. Perinatol. 9, 505–21.CrossRefGoogle ScholarPubMed
Wright, R.J. Jr & Bondioli, K.R. (1981). Aspects of in vitro fertilization and embryo culture in domestic animals. J. Anim. Sci. 53, 702–29.CrossRefGoogle ScholarPubMed
Yuan, Y.Q., Van Soom, A., Coopman, F.O.J., Mintiens, K., Boerjan, M.L., Van Zeveren, A., De Kruif, A. & Peelman, L.J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 1585–96.CrossRefGoogle ScholarPubMed