Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T05:36:01.821Z Has data issue: false hasContentIssue false

ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration

Published online by Cambridge University Press:  15 July 2014

Yael Jaldety
Affiliation:
The Mina & Everard Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel.
Haim Breitbart*
Affiliation:
The Mina & Everard Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
*
All correspondence to: Professor Haim Breitbart. The Mina & Everard Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel. e-mail: haim.breitbart@biu.ac.il

Summary

Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almog, T., Lazar, S., Reiss, N., Etkovitz, N., Milch, E., Rahamim, N., Dobkin-Bekman, M., Rotem, R., Kalina, M., Ramon, J., Raziel, A., Breitbart, H., Seger, R. & Naor, Z. (2008). Identification of extracellular signal-regulated kinase 1/2 and p38MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoa quality. J. Biol. Chem. 283, 14479–89.CrossRefGoogle Scholar
Austin, C.R. (1952). The capacitation of the mammalian sperm. Nature 170, 326.CrossRefGoogle ScholarPubMed
Awda, B.J. & Buhr, M.M. (2010). Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa. Biology of Reproduction 83, 750–8.CrossRefGoogle ScholarPubMed
Bailey, J.L. (2010). Factors regulating sperm capacitation. Syst. Biol. Reprod. Med. 56, 334–48.CrossRefGoogle ScholarPubMed
Bleil, J.D. & Wassarman, P.M. (1986). Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J. Cell Biol. 102, 1363–71.CrossRefGoogle ScholarPubMed
Breitbart, H. & Spungin, B. (1997). The biochemistry of the acrosome reaction. Molecular Hum. Reprod. 3, 195202.CrossRefGoogle ScholarPubMed
Brener, E., Rubinstein, S., Cohen, G., Shternall, K., Rivlin, J. & Breitbart, H. (2003). Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 68, 837–45.CrossRefGoogle ScholarPubMed
Chang, M.C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168, 697–8.CrossRefGoogle ScholarPubMed
Che, Q. & Carmines, P.K. (2002). Angiotensin II triggers EGFR tyrosine kinase-dependent Ca2+ influx in afferent arterioles. Hypertension 40, 700–6.CrossRefGoogle ScholarPubMed
Chen, W.Y., Ni, Y., Pan, Y.M., Shi, Q.X., Yuan, Y.Y., Chen, A.J., Mao, L.Z., YuS,Q. S,Q. & Roldan, E.R. (2005). GABA, progesterone and zona pellucida activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa. FEBS Letts. 579, 4692–700.CrossRefGoogle ScholarPubMed
de Lamirande, E. & Gagnon, C. (2002). The extracellular signal-regulated kinase (ERK) pathway is involved in human sperm function and modulated by the superoxide anion. Mol. Hum. Reprod. 8, 124–35.CrossRefGoogle ScholarPubMed
du Plessis, S.S., Page, C. & Franken, D.R. (2001). The zona pellucida-induced acrosome reaction of human spermatozoa involves extracellular signal-regulated kinase activation. Andrologia 33, 337–42.CrossRefGoogle ScholarPubMed
Etkovitz, N., Rubinstein, S., Daniel, L. & Breitbart, H. (2007). Role of PI3-kinase and PI4-kinase in actin polymerization during bovine sperm capacitation. Biol. Reprod. 77, 263–73.CrossRefGoogle ScholarPubMed
Etkovitz, N., Tirosh, Y., Chazan, R., Jaldety, Y., Daniel, L., Rubinstein, S. & Breitbart, H. (2009). Bovine sperm acrosome reaction induced by G protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev. Biol. 334, 447–57.CrossRefGoogle ScholarPubMed
Florman, H.M., Arnoult, C., Kazam, I.G., Li, C. & O’Toole, C.M. (1998). A perspective on the control of mammalian fertilization by egg-activated ion channels in sperm: a tale of two channels. Biol. Reprod. 59, 12–6.CrossRefGoogle ScholarPubMed
Heo, J.S., Lee, Y.J. & Han, H.J. (2006). EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs. Am. J. Physiol.: Cell Physiol. 290, C12333.CrossRefGoogle ScholarPubMed
Huang, T.T. Jr. & Yanagimachi, R. (1985). Inner acrosomal membrane of mammalian spermatozoa: its properties and possible functions in fertilization. Am. J. Anat. 174, 249–68.CrossRefGoogle ScholarPubMed
Ickowicz, D., Finkelstein, M. & Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J. Androl. 14, 816–21.CrossRefGoogle ScholarPubMed
Jaldety, Y., Glick, Y., Orr-Urtreger, A., Ickowicz, D., Gerber, D. & Breitbart, H. (2012). Sperm epidermal growth factor receptor (EGFR) mediates alpha7 acetylcholine receptor (AChR) activation to promote fertilization. J. Biol. Chem. 287, 22328–40.CrossRefGoogle ScholarPubMed
Jiang, G. & Hunter, T. (1999). Receptor signaling: when dimerization is not enough. Curr. Biol. 9, R56871.CrossRefGoogle ScholarPubMed
Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., Chiba, K. & Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Nat. Acad. Sci. USA 108, 4892–6.CrossRefGoogle ScholarPubMed
Jorissen, R.N., Walker, F., Pouliot, N., Garrett, T.P., Ward, C.W. & Burgess, A.W. (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 3153.CrossRefGoogle ScholarPubMed
Kawanabe, Y., Nozaki, K., Hashimoto, N. & Masaki, T. (2003). Involvement of extracellular Ca2+ influx and epidermal growth factor receptor tyrosine kinase transactivation in endothelin-1-induced arachidonic acid release. Brit. J. Pharmacol. 139, 1516–22.CrossRefGoogle ScholarPubMed
Kirkman-Brown, J.C., Punt, E.L., Barratt, C.L. & Publicover, S.J. (2002). Zona pellucida and progesterone-induced Ca2+ signaling and acrosome reaction in human spermatozoa. J. Androl. 23, 306–15.CrossRefGoogle ScholarPubMed
Lax, Y., Rubinstein, S. & Breitbart, H. (1994). Epidermal growth factor induces acrosomal exocytosis in bovine sperm. FEBS Letts. 339, 234–8.CrossRefGoogle ScholarPubMed
Lemmon, M.A. & Schlessinger, J. (1994). Regulation of signal transduction and signal diversity by receptor oligomerization. Trends Biochem. Sci. 19, 459–63.CrossRefGoogle ScholarPubMed
Liebmann, C. (2001). Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell. Signal. 13, 777–85.CrossRefGoogle ScholarPubMed
Lu, Q., Sun, Q.Y., Breitbart, H. & Chen, D.Y. (1999). Expression and phosphorylation of mitogen-activated protein kinases during spermatogenesis and epididymal sperm maturation in mice. Arch. Androl. 43, 5566.CrossRefGoogle ScholarPubMed
Luconi, M., Barni, T., Vannelli, G. B., Krausz, C., Marra, F., Benedetti, P.A., Evangelista, V., Francavilla, S., Properzi, G., Forti, G. & Baldi, E. (1998a). Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Biol. Reprod. 58, 1476–89.CrossRefGoogle ScholarPubMed
Luconi, M., Krausz, C., Barni, T., Vannelli, G.B., Forti, G. & Baldi, E. (1998b). Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa. Mol. Hum. Reprod. 4, 251–8.CrossRefGoogle ScholarPubMed
Luna, C., Colás, C., Pérez-Pé, R., Cebrián-Pérez, J. A. & Muiño-Blanco, T. (2012). A novel epidermal growth factor-dependent extracellular signal-regulated MAP kinase cascade involved in sperm functionality in sheep. Biol. Reprod. 87, 93.CrossRefGoogle ScholarPubMed
Moynihan, B., Tolloczko, B., Michoud, M.C., Tamaoka, M., Ferraro, P. & Martin, J.G. (2008). MAP kinases mediate interleukin-13 effects on calcium signaling in human airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L171–7.CrossRefGoogle ScholarPubMed
Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C. & Ullrich, A. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–8.CrossRefGoogle ScholarPubMed
Rossomando, E.F. (1989). Application of high-performance liquid chromatography to enzyme activity determination. J. Chromatogr. 492, 361–75.CrossRefGoogle ScholarPubMed
Schlessinger, J. (1988). The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry 27, 3119–23.CrossRefGoogle ScholarPubMed
Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211–25.CrossRefGoogle ScholarPubMed
Shah, B.H. & Catt, K.J. (2004). GPCR-mediated transactivation of RTKs in the CNS: mechanisms and consequences. Trends Neurosci. 27, 4853.CrossRefGoogle ScholarPubMed
Shah, B.H., Baukal, A.J., Shah, F.B. & Catt, K.J. (2005). Mechanisms of extracellularly regulated kinases 1/2 activation in adrenal glomerulosa cells by lysophosphatidic acid and epidermal growth factor. Mol. Endocrinol. 19, 2535–48.CrossRefGoogle ScholarPubMed
Spungin, B. & Breitbart, H. (1996). Calcium mobilization and influx during sperm exocytosis. J. Cell Sci. 109, 1947–55.CrossRefGoogle ScholarPubMed
Tinhofer, I., Maly, K., Dietl, P., Hochholdinger, F., Mayr, S., Obermeier, A. & Grunicke, H.H. (1996). Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J. Biol. Chem. 271, 30505–9.CrossRefGoogle ScholarPubMed
Visconti, P.E., Bailey, J.L., Moore, G.D., Pan, D., Olds-Clarke, P. & Kopf, G.S. (1995a). Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121, 1129–37.CrossRefGoogle ScholarPubMed
Visconti, P.E., Moore, G.D., Bailey, J.L., Leclerc, P., Connors, S.A., Pan, D., Olds-Clarke, P. & Kopf, G.S. (1995b). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121, 1139–50.CrossRefGoogle ScholarPubMed
Weidinger, S., Mayerhofer, A., Kunz, L., Albrecht, M., Sbornik, M., Wunn, E., Hollweck, R., Ring, J. & Kohn, F. M. (2005). Tryptase inhibits motility of human spermatozoa mainly by activation of the mitogen-activated protein kinase pathway. Human Reproduction 20, 456–61.CrossRefGoogle ScholarPubMed
Wetzker, R. & Bohmer, F.D. (2003). Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat. Rev. Mol. Cell Biol. 4, 651–7.CrossRefGoogle Scholar
Widmann, C., Gibson, S., Jarpe, M. B. & Johnson, G. L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–80.CrossRefGoogle ScholarPubMed
Yanagimachi, R. (1994). Fertility of mammalian spermatozoa: its development and relativity. Zygote 2, 371–2.CrossRefGoogle ScholarPubMed
Yanagimachi, R. & Usui, N. (1974). Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp. Cell Res. 89, 161–74.CrossRefGoogle ScholarPubMed