Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:35:30.920Z Has data issue: false hasContentIssue false

Freezing injuries in the embryos of Piaractus mesopotamicus

Published online by Cambridge University Press:  23 August 2010

Darci Carlos Fornari*
Affiliation:
Departamento Zootecnia–Universidade Estadual de Maringá, Av. Colombo, 5790-Campus Universitário, CEP: 87020-900 Maringá, Paraná, Brasil.
Ricardo Pereira Ribeiro
Affiliation:
Universidade Estadual de Maringá (UEM) – Depto. de Zootecnia–Maringá, Paraná State, Brasil.
Danilo Pedro Streit Jr
Affiliation:
Universidade Federal do Rio Grande do Sul – UFRGS, Brasil.
Lauro Vargas
Affiliation:
Universidade Estadual de Maringá (UEM) – Depto. de Zootecnia–Maringá, Paraná State, Brasil.
Nelson M. Lopera Barrero
Affiliation:
Universidade Estadual de Maringá (UEM) – Grupo de Pesquisa PeixeGen
Gentil Vanini de Moraes
Affiliation:
Universidade Estadual de Maringá (UEM) – Depto. de Zootecnia–Maringá, Paraná State, Brasil.
*
All correspondence to: Darci Carlos Fornari. Departamento Zootecnia–Universidade Estadual de Maringá, Av. Colombo, 5790-Campus Universitário, CEP: 87020-900 Maringá, Paraná, Brasil. Tel: +55 44 3261 8969. e-mail: darci.peixegen@gmail.com

Summary

Cryopreservation of mammal embryos has been technically feasible for many years, but morphological injuries still persist in fish embryos during cryopreservation. Thus, the objective of the present study was to describe these freezing injuries in Piaractus mesopotamicus embryos. Two hundred and twenty-five embryos were collected at the post-gastrula stage and assigned into four treatments of sucrose at 8.5, 17.0, 25.0 or 34.0% plus 9.0% methanol. The control was prepared with distilled water only. The gradual decrease in the temperature was 0.5°C/min. After the seeding stage, the fish embryos were stored in liquid nitrogen at −33°C. Thereafter, they were thawed for evaluating per cent hatching, and the samples collected from every treatment were submitted to scanning electron microscopy for morphological analysis. The micrographic images showed that there was substantial alterations in embryo morphology under the highest concentrations of sucrose. These solutions did not prevent the formation of ice crystals, which lead to deformities and killed the embryos, but the observed reduced level of morphological structure in these embryos when treated with 17.0% sucrose plus 9.0% methanol is a compelling argument for additional studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (1998). Effect of different concentrations of cryoprotectant and extender on the hatching of Indian major carp embryos (Labeo rohita, Catla catla, and Cirrhinus mrigala) stored at low temperature. Cryobiology 37, 318–24.CrossRefGoogle ScholarPubMed
Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (2003). Hatching of common carp (Cyprinus carpio L.) embryo stored at 4 and −2°C in different concentration of methanol and sucrose. Theriogenology 60, 1409–22.CrossRefGoogle Scholar
Billard, R. & Zhang, T. (2001). Techniques of genetic resource banking in fish. In Cryobanking the genetic resource. Wildlife conservation for the future? (eds. Watson, P.F. & Holt, W.V.), pp. 145–70. London: Taylor & Francis.Google Scholar
Castanholli, N. & Zuim, S.M.F. (1985). Consolidação do conhecimento adquirido sobre o pacu, Colossoma mitrei–Berg, 1895. Boletim Técnico do CEPTA 5, 12.Google Scholar
Denniston, R., Michelet, S. & Godke, R.A. (2000). Principles of cryopreservation. In Cryopreservation in aquatic species (eds. Tiersch, T.R. & Mazik, P.M.), pp. 5974. Baton Rouge: World Aquaculture Society.Google Scholar
Galman, O.R. & Avtalion, R.R. (1989). Further study of the embryonic development of Oreochromis niloticus (Cichlidae, teleostei) using scanning electron microscopy. J. Fish Biol. 34, 653–64.CrossRefGoogle Scholar
Hagedorn, M., Hsu, E., Kleinhans, F.W. & Wildt, D.E. (1997). New approaches for studying the permeability of fish embryos: toward successful cryopreservation. Cryobiology 34, 335–47.CrossRefGoogle ScholarPubMed
Harvey, B. (1983). Cooling of embryonic cells, isolated blastoderms, and intact embryos of the zebra fish Brachydanio rerio to –196 degrees Celsius. Cryobiology 20, 440–7.CrossRefGoogle Scholar
Janik, M., Kleinhans, F.W. & Hagedorn, M. (2000). Overcoming a permeability by microinjecting cryoprotectants into zebrafish embryo (Brachidanio rerio). Cryobiology 41, 2534.CrossRefGoogle Scholar
Lahnsteiner, F. (2008). The effect of internal and external cryoprotectants on zebrafish (Dario rerio) embryo. Theriogenology 69, 384–96.CrossRefGoogle Scholar
Lima, R.V.A., Bernardino, G., Val-Sella, M.V., Fava-De-Moraes, F., Schemy, R.A. & Borella, M.I. (1991). Tecido germinativo ovariano e ciclo reprodutivo de pacus (Piaractus mesopotamicus Holmberg, 1887) mantidos em cativeiro. Boletim Técnico do CEPTA, 4, 146.Google Scholar
Neves, P.R. (2008). Utilização de crioprotetores intra e extracelulares em embriões de pacu (P. mesopotamicus). 71 pp. Tese (Doutorado): Universidade Estadual de Maringá, Maringá.Google Scholar
Niemann, H. (1991). Cryopreservation of ova and embryos from livestock: current status and research needs. Theriogenology 35, 109–24.CrossRefGoogle Scholar
Ninhaus-Silveira, A, Foresti, F., Azevedo, A. & Agostinho, C.A. (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei; Prochilodontinae). Zygote 15, 267–71.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F., Azevedo, A., Agostinho, C.A & Veríssimo-Silveira, R. (2009). Cryogenic preservation of embryos of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontinae) Zygote 17, 4555.CrossRefGoogle Scholar
Rawson, D.M., Zhang, T., Kalicharan, D. & Jongebloed, L. (2000). Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationship with respect to cryoprotectant penetration. Aquacult. Res. 31, 325–36.CrossRefGoogle Scholar
Reichenbach, H.D., Oliveira, L., Lima, P.F., Santos-Filho, A.S. & Andrade, J.C.O. Transferência e criopreservação de embriões bovinos. (2001). In Biotécnicas: aplicação à reprodução animal (eds. Gonsalves, P.B., Figueiredo, J.R. & Freitas, V.J.F.), pp. 127–78. São Paulo-SP: Ed Varela.Google Scholar
Shardo, J.D. (1995). Comparative embryology of teleostean fishes. I. Development and staging of the American shad, Alosa sapidissima. J. Morphol. 225, 125–67.CrossRefGoogle ScholarPubMed
Silva, J.A., Barroso, R.M. & Benevides, F.I.M. (1997). Utilização de extrato cru de hipófise de frangos (Gallus domesticus) como indutor de desova em Curimatá (Prochilodus scrofa). Revista Brasileira de Reprodução Animal 21, 30–2.Google Scholar
Streit, D.P. Jr., Benitis, C., Moraes, G.V., Ribeiro, R.P., Sakaguti, E.S. & Caldieri, R.F. (2006). Sêmen de pacu (Piaractus mesopotamicus) criopreservado com diluentes utilizados para sêmen de suínos. Ciência Animal Brasileira 7, 289–97.Google Scholar
Streit, D.P. Jr., Digmayer, M., Ribeiro, R.P., Sirol, R.N., Moraes, G.V. & Galo, J.M. (2007). Embriões de pacu submetidos a diferentes protocolos de resfriamento. Pesquisa Agropecuária Brasileira 42, 1199–202.CrossRefGoogle Scholar
Urbinati, E.C. & Gonçalves, F.D. Pacu (Piaractus mesopotamicus). (2005). In Espécies nativas para a piscicultura no Brasil (eds. Baldisseroto, B. & Gomes, L.C.), pp. 225–46. Santa Maria: UFSM.Google Scholar
Wildt, D.E., Seal, U.S. & Rall, W.F. (1993). Genetic resource banks and reproductive technology for wildlife conservation. In Genetic conservation of salmonid fish (eds. Cloud, J.G. & Thorgaard, G.H.), pp. 159–73. New York: Plenum Press.CrossRefGoogle Scholar
Willadsen, S.M., Polge, C. & Rowson, L.E.A. (1976). Deep-freezing of sheep embryos. J. Reprod. Fertil. 46, 151–4.CrossRefGoogle ScholarPubMed
Willadsen, S.M., Polge, C. & Rowson, L.E.A. (1978). The viability of deep frozen cow embryos. J. Reprod. Fertil. 46, 391–3.CrossRefGoogle Scholar
Woelders, H. (1997). Fundamentals and recent development in cryopreservation of bull and boar semen. Veterinary Quarterly 19, 135–8.CrossRefGoogle ScholarPubMed
Woynarovich, E. & Horváth, L. A propagação artificial de peixes de águas tropicais: manual de extenção. Tradução de chama, V.L.M. Brasília: FAO/CODEVASF/CNPq, 1983. p. 225.Google Scholar
Zhang, T. & Rawson, D.M. (1996). Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryo. Cryobiology 33, 113.CrossRefGoogle Scholar
Zhang, T. & Rawson, D.M. (1998). Permeability of the vitelline membrane of 1-cell and 6-somite stage zebrafish (Brachydanio rerio) embryos to water and methanol. Cryobiology 37, 1321.CrossRefGoogle Scholar