Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:01:49.479Z Has data issue: false hasContentIssue false

In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin

Published online by Cambridge University Press:  28 August 2013

Gamal Mohamed Kamel Mehaisen*
Affiliation:
Animal Production Department, Faculty of Agriculture, Cairo University, 7 Gamaa Street, Postal code 12613, Giza, Egypt.
Ayman Moustafa Saeed
Affiliation:
Animal Biotechnology Department, Animal Production Research Institute, Nady El-Said Street, Postal code 12816, Dokki, Giza, Egypt.
*
All correspondence to: Gamal Mohamed Kamel Mehaisen. Animal Production Department, Faculty of Agriculture, Cairo University, 7 Gamaa Street, Postal code 12613, Giza, Egypt. Tel: +20 235716105. Fax: +20 235717355. e-mail: gamoka@staff.cu.edu.eg

Summary

This study aimed to investigate the effect of melatonin supplementation at different levels in culture medium on embryo development in rabbits. Embryos of 2–4 cells, 8–16 cells and morula stages were recovered from nulliparous Red Baladi rabbit does by laparotomy technique 24, 48 and 72 h post-insemination, respectively. Normal embryos from each stage were cultured to hatched blastocyst stages in either control culture medium (TCM-199 + 20% fetal bovine serum) or control supplemented with melatonin at 10−3 M, 10−6 M or 10−9 M. No effect of melatonin was found on development of embryos recovered at 24 h post-insemination. The high level of melatonin at 10−3 M adversely affected the in vitro development rates of embryos recovered at 48 h post-insemination (52 versus 86, 87 and 80% blastocyst rate; 28 versus 66, 78 and 59% hatchability rate for 10−3 M versus 10−9 M, 10−6 M and control, respectively, P< 0.05). At the morula stage, melatonin at 10−3 M significantly increased the in vitro development of embryos (92% for 10−3 M versus 76% for control, P < 0.05), while the hatchability rate of these embryos was not improved by melatonin (16–30% versus 52% for melatonin groups versus control, P < 0.05). Results show that a moderate level of melatonin (10−6 M) may improve the development and hatchability rates of preimplantation rabbit embryos. The addition of melatonin at a 10−3 M concentration enhances the development of rabbit morulae but may negatively affect the development of earlier embryos. More studies are needed to optimize the use of melatonin in in vitro embryo culture in rabbits.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecia, J.A, Forcada, F. & Zúñiga, O. (2002). The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet. Res. Commun. 26, 151–8.Google Scholar
Agarwal, A., Said, T.M., Bedaiwy, M.A., Banerjee, J. & Alvarez, J.G. (2006). Oxidative stress in an assisted reproductive techniques setting. Fertil. Steril. 86, 503–12.CrossRefGoogle Scholar
Byrne, A.T., Southgate, J. & Brison, D.R. & Leese, H.J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.CrossRefGoogle ScholarPubMed
Casao, A., Abecia, J.A., Cebrián-Pérez, J.A., Muiño-Blanco, T., Vázquez, M.I. & Forcada, F. (2010). The effects of melatonin on in vitro oocyte competence and embryo development in sheep. Spanish J. Agric. Res. 8, 3541.CrossRefGoogle Scholar
Galano, A., Tan, D.X. & Russe, J.R. (2011). Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51, 116.CrossRefGoogle ScholarPubMed
Chen, H.Y., Chen, T.Y., Lee, M.Y. & Chen, S.T. (2006). Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood–brain barrier permeability after transient focal cerebral ischemia in mice. J. Pineal Res. 41, 175–82.Google Scholar
Farahavar, A., Shahne, A.Z., Kohram, H. & Vahedi, V. (2010). Effect of melatonin on in vitro maturation of bovine oocytes. African J. Biotech. 9, 2579–83.Google Scholar
Forcada, F. & Lopez, M. (2000). Repeated surgical embryo recovery and embryo production in rabbits. Anim. Reprod. Sci. 64, 121–6.Google Scholar
Gao, C., Han, H.B., Tian, X.Z., Tan, D.X., Wang, L., Zhou, G.B., Zhu, S.E. & Liu, G.S. (2012). Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res. 52, 305–11.Google Scholar
Hao, Y., Lai, L., Mao, J., Im, G.S., Bonk, A. & Prather, R.S. (2003). Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol. Reprod. 69, 501–7.Google Scholar
Ishizuka, B., Kuribayashi, Y., Murai, K., Amemiya, A. & Itoh, M.T. (2000). The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 28, 4851.Google Scholar
Khalil, M.H. & Baselga, M. (2002). Rabbit genetic resources in Mediterranean countries. In: Options Méditerranéennes (eds. Khalil, M.H., Baselga, M.), Série B., no. 38, 262 pp. CIHEAM, Zaragoza, Spain.Google Scholar
Kitagawa, Y., Suzuki, K., Yoneda, A. & Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–97.CrossRefGoogle ScholarPubMed
Lavara, R., Lavara, F., Vicente, J.S. & Mocé, E. (2000). Use of different diluents with a low number of spermatozoa by insemination dose in rabbits. Proc. 7th World Rabbit Congress, Valencia, Spain, vol. A, pp. 173–7.Google Scholar
Manjunatha, B.M., Devaraj, M., Gupta, P.S.P., Ravindra, J.P. & Nandi, S. (2009). Effect of taurine and melatonin in the culture medium on buffalo in vitro embryo development. Reprod. Dom. Anim. 44, 12–6.Google Scholar
McElhinny, A.S., Davis, F.C. & Warner, C.M. (1996). The effect of melatonin on cleavage rate of C57BL/6 and CBA/Ca preimplantation embryos cultured in vitro. J. Pineal Res. 21, 44–8.CrossRefGoogle ScholarPubMed
Nazzaro, A., Salerno, A., Marino, S., Granato, C. & Pastore, E. (2011). The addiction of melatonin to myo-inositol plus folic acid improve oocyte quality and pregnancy outcome in IVF cycle. A prospective clinical trial. The 27th Annual Meeting of ESHRE, Stockholm, Sweden, pp. i227–8 (P-273 Abstract).Google Scholar
Noguchi, H., Kitazumi, K., Mori, M., Shiobara, Y. & Shiba, T. (2003). Effect of zaleplon, a non-benzodiazepine hypnotic, on melatonin secretion in rabbits. J. Pharmacol. Sci. 93, 204–9.CrossRefGoogle ScholarPubMed
Pang, Y.W., An, L., Wang, P., Yu, Y., Yin, Q.D., Wang, X.H., Zhang, X., Zhang, Q., Yang, M.L., Guo, M., Wua, Z.H. & Tiana, J.H. (2012). Treatment of porcine donor cells & reconstructed embryos with the antioxidant melatonin enhances cloning efficiency. J. Pineal Res. 54, 389–97.Google Scholar
Papis, K., Poleszczuk, O., Wenta-Muchalska, E. & Mondlinski, J.A. (2007). Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res. 43, 321–6.Google Scholar
Rodriguez-Osorio, N., Kim, I.J., Wang, H., Kaya, A. & Memili, E. (2007). Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J. Pineal Res. 43, 283–8.Google Scholar
Tian, X.Z., Wen, Q., Shi, J.M., Wang, L., Zeng, S.M. & Tian, J.H. (2010). Effects of melatonin on in vitro development of mouse two-cell embryos cultured in HTF medium. Endocr. Res. 35, 1723.Google Scholar
Tsantarliotou, M.P., Attanasio, L., De Rosa, A., Boccia, L., Pellerano, G. & Gasparrini, B. (2007). The effect of melatonin on bovine in vitro embryo development. Italian J. Anim. Sci. 6, 488–9.Google Scholar
Warner, S.M., Conlon, F.V. & Kane, M.T. (2003). Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors. Reproduction 125, 479–93.Google Scholar