Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:37:42.541Z Has data issue: false hasContentIssue false

Incidence of apoptosis after retinoids and insulin-like growth factor-I (IGF-I) supplementation during goat in vitro embryo production

Published online by Cambridge University Press:  17 June 2016

Juliana C.Z. Conceição
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
Marcelo T. Moura
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
José C. Ferreira-Silva
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
Ludymila F. Cantanhêde
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
Ricardo M. Chaves
Affiliation:
Laboratório de Reprodução Animal da Universidade Estadual do Maranhão, São Luis-MA/Brasil.
Paulo F. Lima
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
Marcos A.L. Oliveira*
Affiliation:
Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil.
*
All correspondence to: Marcos A.L. Oliveira. Laboratório de Biotécnicas Reprodutivas do Departamento de Medicina Veterinária da Universidade Federal Rural de Pernambuco (UFRPE). Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171–900 Recife-PE/Brasil. Tel:/Fax: +55 81 3320-6415. E-mail: maloufrpe@uol.com.br

Summary

The addition of growth factors and vitamins enhances goat embryonic development in vitro. However, few attempts have been reported trying to identify supplementation regimens for oocyte maturation or embryo culture with additive properties. The present report was aimed to evaluate if retinoids [0.3 μM retinyl acetate (RAc) and 0.5 μM 9-cis-retinoic acid (RA)] supplementation during goat oocyte maturation and retinoids and/or 50 ng mL–1 IGF-I during embryo culture synergically enhanced embryonic development while diminishing the incidence of apoptosis. All combinations of RAc and RA treatment produced blastocysts with similar efficiencies, while IGF-I enhanced embryos yields irrespectively of retinoid addition. Moreover, retinoids and IGF-I supplementation showed similar caspase activity or DNA fragmentation indexes in blastocysts. In conclusion, supplementation with retinoids and IGF-I during goat embryo culture enhances blastocysts development without synergic reduction of apoptosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldassarre, H. & Karatzas, C.N. (2004). Advanced assisted reproduction technologies (ART) in goats. Anim. Reprod. Sci. 82–83, 255–66.Google Scholar
Bormann, C.L., Ongeri, E.M. & Krisher, R.L. (2003). The effect of vitamins during maturation of caprine oocytes on subsequent developmental potential in vitro . Theriogenology 59, 1373–80.Google Scholar
Chiamenti, A., Aguiar Filho, C.R., Freitas Neto, L.M., Chaves, R.M., Paula-Lopes, F.F., Lima, P.F. & Gonçalves, P.B., Cavalcanti Neto, C.C. & Oliveira, M.A. (2010). Effects of retinoids on the in vitro development of Capra hircus embryos to blastocysts in two different culture systems. Reprod. Domest. Anim. 45, 6872.Google Scholar
Chiamenti, A., Filho, C.R., Moura, M.T., Paula-Lopes, F.F., Neves, J.P., Neto, C.C., Gonçalves, P.B., Lima, P.F. & Oliveira, M.A. (2013). Use of retinyl acetate, retinoic acid and insulin-like growth factor-I (IGF-I) to enhance goat embryo production. Acta Vet. Hung. 61, 116–24.Google Scholar
Conceição, J.C.Z., Moura, M.T., Ferreira-Silva, J.C., Deus, P.R., Silva, P.G.C., Cantanhede, L.F., Chaves, R.M., Lima, P.F. & Oliveira, M.A.L. (2015). Use of retinoids during oocyte maturation diminishes apoptosis in caprine embryos. Acta Vet. Hung. 63, 234–42.Google Scholar
Clagett-Dame, M. & DeLuca, H.F. (2002). The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347–81.Google Scholar
Cognié, Y., Poulin, N., Locatelli, Y. & Mermillod, P. (2004). State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants. Reprod. Fertil. Dev. 16, 437–45.Google Scholar
Duque, P., Gómez, E., Hidalgo, C., Facal, N., Fernández, I. & Díez, C. (2002). Retinoic acid during in vitro maturation of bovine oocytes promotes embryonic development and early differentiation. Theriogenology 57, 364 Abstract.Google Scholar
Hansen, P.J. & Fear, J.M. (2011). Cheating death at the dawn of life: developmental control of apoptotic repression in the preimplantation embryo. Biochem. Biophys. Res. Commun. 413, 155–8.Google Scholar
Keefer, C.L., Baldassarre, H., Keyston, R., Wang, B., Bhatia, B., Bilodeau, A.S., Zhou, J.F., Leduc, M., Downey, B.R., Lazaris, A. & Karatzas, C.N. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–56.Google Scholar
Keskintepe, L., Simplicio, A.A. & Brackett, B.G. (1998). Caprine blastocyst development after in vitro fertilization with spermatozoa frozen in different extenders. Theriogenology 49, 1265–74.Google Scholar
Kooijman, R. (2006). Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev. 17, 305–23.Google Scholar
Lima, P.F., Oliveira, M.A.L., Goncalves, P.B.D., Montagner, M.M., Reichenbach, H-D., Weppert, M., Cavalcanti Neto, C.C., Pina, V.M.R. & Santos, M.H.B. (2004). Effects of retinol on the in vitro development of Bos indicus embryos to blastocysts in two different culture systems. Reprod. Dom. Anim. 39, 356–60.Google Scholar
Lima, P.F., Oliveira, M.A.L., Santos, M.H.B., Reichenbach, H-D., Weppert, M., Paula-Lopes, F., Cavalcanti Neto, C.C. & Goncalves, P.B.D. (2006). Effect of retinoids and growth factor on in vitro bovine embryos produced under chemically defined conditions. Anim. Reprod. Sci. 95, 184–92.Google Scholar
Makarevich, A.V. & Markkula, M. (2002). Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor during in vitro maturation and culture. Biol. Reprod. 66, 386–92.Google Scholar
Mohan, M., Malayer, J.R., Geisert, R.D. & Morgan, G.L. (2001). Expression of retinol-binding protein messenger RNA and retinoic acid receptors in preattachment bovine embryos. Mol. Reprod. Dev. 60, 289–92.Google Scholar
Noy, N. (2010). Between death and survival: retinoic acid in regulation of apoptosis. Annu. Rev. Nutr. 30, 201–17.Google Scholar
Paula-Lopes, F.F. & Hansen, P.J. (2002a). Apoptosis is an adaptative response in bovine preimplantation embryos that facilitates survival after heat shock. Biochem. Biophys. Res. Commun. 295, 3742.Google Scholar
Paula-Lopes, F.F. & Hansen, P.J. (2002b). Heat shock-induced apoptosis in preimplantation bovine embryos. is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–77.Google Scholar
Peippo, J., Kurkilahti, M. & Bredbacka, P. (2001). Developmental kinetics of in vitro produced bovine embryos: the effect of sex, glucose and exposure to time-lapse environment. Zygote 9, 105–13.Google Scholar
Prelle, K., Stojkovic, M., Boxhammer, K., Motlik, J., Ewald, D., Arnold, G.J. & Wolf, E, (2001). Insulin-like growth factor I (IGF-I) and long R(3)IGF-I differently affect development and messenger ribonucleic acid abundance for IGF-binding proteins and type I IGF receptors in vitro produced bovine embryos. Endocrinology 142, 1309–16.Google Scholar
Rhinn, M. & Dollé, P. (2012). Retinoic acid signalling during development. Development 139, 843–58.Google Scholar
Roth, Z. & Hansen, P.J. (2004). Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol. Reprod. 71, 1898–906.Google Scholar
Sirisathien, S., Hernandez-Fonseca, H.J. & Brackett, B.G. (2003). Influences of epidermal growth factor and insulin-like growth factor-I on bovine blastocyst development in vitro . Anim. Reprod. Sci. 77, 2132.Google Scholar
Souza-Fabjan, J.M., Panneau, B., Duffard, N., Locatelli, Y., de Figueiredo, J.R., Freitas, V.J. & Mermillod, P. (2014). In vitro production of small ruminant embryos: late improvements and further research. Theriogenology 81, 1149–62.Google Scholar
Spanos, S., Becker, D.L., Winston, R.M. & Hardy, K. (2000). Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol. Reprod. 63, 1413–20.Google Scholar
Walker, S.K., Hill, J.L., Kleemann, D.O. & Nancarrow, C.D. (1996). Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol. Reprod. 55, 703–8.Google Scholar
Wan, P.C., Hao, Z.D., Zhou, P., Wu, Y., Yang, L., Cui, M.S., Liu, S.R. & Zeng, S.M. (2009). Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos. Anim. Reprod. Sci. 114, 279–88.Google Scholar
Watson, A.J., De Sousa, P., Caveney, A., Barcroft, L.C., Natale, D., Urquhart, J. & Westhusin, M.E. (2000). Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biol. Reprod. 62, 355–64.Google Scholar
Zhang, H., Wu, B., Liu, H., Qiu, M., Liu, J., Zhang, Y. & Quan, F. (2013). Improving development of cloned goat embryos by supplementing α-lipoic acid to oocyte in vitro maturation medium. Theriogenology 80, 228–33.Google Scholar