Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T10:03:42.815Z Has data issue: false hasContentIssue false

Injuries in pacu embryos (Piaractus mesopotamicus) after freezing and thawing

Published online by Cambridge University Press:  11 July 2012

Patrícia Ribeiro Neves
Affiliation:
Departamento Zootecnia – Universidade Estadual de Maringá, Av. Colombo, 5790 – Campus Universitário, CEP: 87020-900 Maringá, Paraná, Brasil.
Ricardo Pereira Ribeiro
Affiliation:
Universidade Estadual de Maringá (UEM) – Depto. de Zootecnia e Biologia–Maringá, Paraná State, Brasil.
Danilo Pedro Streit Jr
Affiliation:
Universidade Federal do Rio Grande do Sul – UFRGS, Brasil.
Maria Raquel M. Natali
Affiliation:
Universidade Estadual de Maringá (UEM) – Depto. de Zootecnia e Biologia–Maringá, Paraná State, Brasil.
Darci Carlos Fornari*
Affiliation:
Departamento Zootecnia – Universidade Estadual de Maringá, Av. Colombo, 5790 – Campus Universitário, CEP: 87020-900 Maringá, Paraná, Brasil.
Alexandra Inês Santos
Affiliation:
Universidade Estadual de Maringá (UEM) – Grupo de Pesquisa PeixeGen, Brasil.
Leandro C. Godoy
Affiliation:
Universidade Federal do Rio Grande do Sul – UFRGS, Brasil.
*
All correspondence to: Darci Carlos Fornari. Departamento Zootecnia – Universidade Estadual de Maringá, Av. Colombo, 5790 – Campus Universitário, CEP: 87020-900 Maringá, Paraná, Brasil. Tel: +5544 3261 8969. e-mail: darci.peixegen@gmail.com

Summary

Although the sperm cryopreservation of freshwater and marine teleosts has been feasible for years, the cryopreservation of some fish embryos still remains elusive. Thus, the objective of this experiment was to analyze the embryo morphology after freezing and thawing 40 embryos of Piaractus mesopotamicus immersed into methanol and ethylene glycol, both at 7, 10 and 13% plus 0.1 M sucrose for 10 min. Soon after thawing, three embryos were treated with historesin, stained with hematoxylin–eosin and analyzed under an optical microscope. From every treatment, one palette containing embryos was thawed and incubated, but none of the eggs hatched. Samples containing two embryos were immersed into 10% methanol or 10% ethylene glycol both in association with sucrose, and embryos immersed into only water or sucrose solution were frozen, processed and analyzed using scanning electron microscopy (SEM). In both cases, the control group was immersed into only water. Although the embryos had the chorion, vitello, yolk syncytial layer and blastoderm, all of them were found altered under the optical microscope and by SEM. The chorion was irregular and injured; there was no individuality in the yolk granules; the yolk syncytial layer had an irregular shape, thickness and size; the blastoderm showed injuries in the nucleus shape and sometimes was absent; the blastoderm was located in atypical areas and absent in some embryos. In conclusion, no treatment was effective in preserving the embryos, and none of the embryos avoided injury from intracellular ice formation. These morphological injuries during the freezing process made the P. mesopotamicus embryos unfeasible for hatching.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballou, J.D. (1992). Potential contribution of cryopreserved germ plasm to the preservation of genetic diversity and conservation of endangered species in captivity. Cryobiology 29, 1925.CrossRefGoogle Scholar
Castagnolli, N. & Zuim, S.M.F. (1985). Consolidação do conhecimento adquirido sobre o pacu, Colossoma mitrei–Berg, 1895. Boletim Técnico do CEPTA 5, 12.Google Scholar
Denniston, R., Michelet, S. & Godke, R.A. (2000). Principles of cryopreservation. In: Tiersch, T.R. & Mazik, P.M.Cryopreservation in Aquatic Species. World Aquaculture Society, pp. 5974.Google Scholar
Dobrinsky, J.R. (1996). Cellular approach to cryopreservation of embryos. Theriogenology 45, 1726.CrossRefGoogle Scholar
Fornari, D.C., Ribeiro, R.P., Streit, D.P. Jr., Vargas, L. & Moraes, V.G. (2010). Freezing injuries in the embryos of Piaractus mesopotamicus. Zygote 18, 16.Google Scholar
Hagedorn, M., Hsu, E., Kleinhans, F.W. & Wildt, D.E. (1997a). New approaches for studying the permeability of fish embryos: toward successful cryopreservation. Cryobiology 34, 335347.CrossRefGoogle ScholarPubMed
Hagedorn, M., Kleinhans, F.W., Weidt, D.E. & Rall, W.E. (1997b). Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology, 34, 251–63.CrossRefGoogle ScholarPubMed
Hagedorn, M., Kleinhans, F.W., Artmov, D., Artmov, D. & Pilatus, U. (1998). Characterization of a major permeability barrier in the zebrafish embryo. Biol. Reprod. 59, 1240–50.CrossRefGoogle Scholar
Hagedorn, M., Peterson, A., Mazur, P. & Kleinhans, F.W. (2004). High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Cryobiology 49, 181–9.CrossRefGoogle Scholar
Harvey, B. (1983). Cooling of embryonic cells, isolated blastoderms, and intact embryos of the zebrafish Brachydanio rerio to –196 Celsius. Cryobiology 20, 440–7.CrossRefGoogle Scholar
IBAMA. (2007). Estatística da pesca 2005: Brasil, grandes regiões e unidades da federação. Brasília: IBAMA, 2007. 137 pp.Google Scholar
Janik, M., Kleinhans, F.W. & Hagedorn, M. (2000). Overcoming a permeability by microinjecting cryoprotectants into zebrafish embryos (Brachidanio rerio) Cryobiology 41, 2534.CrossRefGoogle Scholar
Kasai, M. (1996). Simple and efficient methods for vitrification of mammalian embryos. Anim. Reprod. Sci. 42, 6775.CrossRefGoogle Scholar
Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, 125142.CrossRefGoogle ScholarPubMed
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme; Prochilodontidae). Zygote 14, 217–29.CrossRefGoogle ScholarPubMed
Ninhaus-Silveira, A., Foresti, F., Azevedo, A. & Augustine, C.A. (2007). Structural and ultrastructural characteristics of the yolk syncytial layer in Prochilodus lineatus (Valenciennes, 1836) (Teleostei, Prochilodontidae). Zygote 15, 267–71.CrossRefGoogle ScholarPubMed
Robles, V., Cabrita, E., Real, M., Alvarez, R. & Herraez, M.P. (2003). Vitrification of turbot embryos: preliminary assays. Cryobiology 47, 30–9.CrossRefGoogle ScholarPubMed
Streit, D.P. Jr, Digmayer, M., Ribeiro, R.P., Sirol, R.N., Moraes, G.V. & Cock, J.M. (2007). Embriões de pacu submetidos a diferentes protocolos de resfriamento. Pesquisa Agropecuária Brasileira 42, 1199–202.CrossRefGoogle Scholar
Vajta, G. (2000). Vitrification of the oocytes and embryos of domestic animals. Anim. Reprod. Sci. 60–61, 357–64.CrossRefGoogle ScholarPubMed
Wildt, D.E., Seal, U.S. & Rall, W.F. (1993). Genetic resource banks and reproductive technology for wildlife conservation. In: Genetic Conservation of Salmonid Fishes. (Cloud, J.G. and Thorgaard, G.H., eds) pp. 159–73.CrossRefGoogle Scholar
Zhang, T. & Rawson, D.M. (1995). Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32, 239–46.CrossRefGoogle Scholar
Zhang, T. & Rawson, D.M. (1996). Studies on vitrification of intact zebrafish (Brachydanio rerio) embryos. Cryobiology 33, 113.CrossRefGoogle Scholar
Zhang, T., Rawson, D.M. & Morris, G.J. (1993). Cryopreservation of pre-hatch embryos of zebrafish (Brachydanio rerio) embryos. Aquat. Living Resour. 6, 145–53.CrossRefGoogle Scholar