Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T21:02:05.993Z Has data issue: false hasContentIssue false

A molecular screen for polar-localised maternal RNAs in the early embryo of Drosophila

Published online by Cambridge University Press:  26 September 2008

Dali Ding
Affiliation:
California institute of Technology, Pasadena, California, USA
Howard D. Lipshitz*
Affiliation:
California institute of Technology, Pasadena, California, USA
*
H.D. Lipshitz, Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA. Telephone: 818-395-6446. Fax: 818-564-8709. E-mail: lipshitzh@starbasel.caltech.edu

Summary

Localised, maternally synthesised RNAs and proteins play an important role in an early animal embryogenesis. In Drosophila, genetic screens have recovered a number of maternal effect loci that encode localised products in the embryo. However, only a third of Drosophila's genes have been genetically mutated. Consequently, we conducted a molecular screen for polar-localised RNAs in the early Drosophila embryo in order to identify additional maternal molecules that carry out spatially restricted functions during early embryogenesis. Total RNA was purified from anterior or posterior poles cut off early Drosophila embryos. These RNAs were used to construct directionally cloned anterior and posterior cDNA libraries which were used in a differential screen for cDNAs representing maternal RNAs localised to one or other pole of the embryo. Five such clones were identified, representing cyclin B RNA, Hsp83 RNA, 28S ribosomal RNA, mitochondrial cytochrome c oxidase subunit one RNA and mitochondrial 16S large ribosomal RNA. Mutations in the loci encoding these RNAs have not been recovered in genetic screens, confirming that our molecular approach complements genetic strategies for identifying maternal molecules that carry out spatially restricted functions in the early embryo. We consider the possible biological significance of localisation of each of these species of transcripts as well as the mechanism of their localisation, and discuss the potential use of our cDNA libraries in screens for rarer localised RNAs.

Type
Review Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, T. & Okada, M. (1992). Spatial and developmental changes in the respiratory activity of mitochondria in early Drosophila embryos. Developmet 115, 1175–82.Google ScholarPubMed
Barker, D.D., Wang, C., Moore, J., Dickinson, L.K. & Lehmann, R. (1992). Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 6, 2312–26.CrossRefGoogle Scholar
Benkel, B.F., Duschesnay, P., Boer, P.H., Genest, Y. & Hickey, D.A. (1988). Mitochondrial large ribosomal RNA: an abundant sequence in Drosophila. Nucleic Acids Res 16, 9880.CrossRefGoogle ScholarPubMed
Blackman, R.K. & Meselson, M. (1986). Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J. Mol. Biol. 188, 499515.CrossRefGoogle ScholarPubMed
Bossy, B., Hall, L.M.C. & Spierer, P. (1984). Genetic activity along 315 kb of the Drosophila chromosome EMBO J. 3, 2537–41.CrossRefGoogle ScholarPubMed
Boswell, R.E. & Mahowald, A.P. (1985). tudor a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43, 97104.CrossRefGoogle Scholar
Dalby, B. & Glover, D.M. (1992). 3' non-translated sequences in Drosophila cyclin B transcripts direct posterior pole accumulation late in oogensis and peri-nuclear association in syncytial embryos. Development 115, 989–97.CrossRefGoogle Scholar
Dalby, B. & Glover, D.M. (1983). Discrete sequence elements control posterior pole accumulation and translational repression of maternal cyclin B RNA in Drosophila EMBO J. 12, 1219–27.CrossRefGoogle Scholar
Davidson, E.H. (1986). Gene Activity in Early Development. 3rd edn. Orlando, FL:Academic Press.Google Scholar
Davis, M.M., Cohen, D.I., Nielsen, E.I., Steinmetz, M.S., Paul, W.E. & Hood, L. (1984). Cell type-specific cDNA probes and the murine I region Proc. Natl. Acad. Sci. USA 81, 2194–8.CrossRefGoogle ScholarPubMed
Ding, D. & Lipshitz, H.D. (1993) Localized RNAs and their functions. BioEssays 15, in press.Google Scholar
ding, D., Parkhurst, S.M. & Lipshitz, H.D. (1993 a). Different genetic requirements for anterior RNA localization revealed by the distribution of Adducin-like transcripts during drosophila oogenessi. proc. Natl Acad. Sci USA 90, 2512–16.CrossRefGoogle Scholar
Ding, D., Parkhurst, S.M., Halsell, S.R. & Lipshitz, H.D. (1993b) Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis Mol. cell. Biol. 13, 37733781.Google ScholarPubMed
Ding, D., Whittaker, K. & Lipshitz, H.D. (1993 c). Mitochondrially encoded 16S large r RNA is associated with the polar plasm in early Drosophila embryos. (in preparation).CrossRefGoogle Scholar
Driever, W. & Nüsslein-Volhard, C. (1988 a). A gradient of bicoid protein in Drosophila embryos Cell 54, 8393.CrossRefGoogle ScholarPubMed
Driever, W. & Nüsslein-Volhard, C. (1988 b). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner Cell 54, 94104.Google Scholar
Driever, W., Thoma, G. & Nüsslein-Volhard, C. (1989). Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–7.CrossRefGoogle ScholarPubMed
Driever, W., Siegel, V. & Nüsslein-Volhard, C. (1990). Autonomous determination of anterion structures in the early Drosophila embryo by the bicoid morphogen. Development 109, 811–20.CrossRefGoogle Scholar
Duguid, J.R. & Dinauer, M.C. (1990). Library subtraction of in vitro cDNA libraries to identify differntially expressed genes in scrapie infection Nucleic Acids Res. 18, 2789–92.CrossRefGoogle Scholar
Ephrussi, A., Dickinson, L.K. & Lehmann, R. (1991). oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 3750.CrossRefGoogle ScholarPubMed
Feinberg, A.P. & Vogelstein, B. (1983).A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity Anal Biochem 132, 613.CrossRefGoogle ScholarPubMed
Foe, V.A. & Alberts, B.M. (1983). studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci 61, 3170.CrossRefGoogle ScholarPubMed
Frigerio, G., Burri, M., Bopp, D., Baumagrtner, S. & Noll, M. (1986). Structure of the segmentation gene paired and the Drosophila PRD gene set as a part of a gene network. Cell 47, 735–46.CrossRefGoogle ScholarPubMed
Fröhnhofer, H.G. & Nüsslein-Volhard, C. (1986). Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324, 120–25.CrossRefGoogle Scholar
Garesse, R. (1988). Drosophila melanogaster mitochondrial DNAL: gene organization and evolutionary considerations. Genetics 118, 649–63.CrossRefGoogle Scholar
Golumbeski, G.S., Bardley, A., Tax, F., Boswell, R.E. (1991). tudor, a posterior-group gene of Drosophila melanogaster, encodes a novel protein and an mRNA localized during mid-oogenesis. Genes Dev. 5, 2060–70.CrossRefGoogle Scholar
Hackett, R.W. & Lis, J.T. (1983). Localization of the Hsp83 RNA within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res. 11, 7011–30.CrossRefGoogle ScholarPubMed
Hay, B., Ackerman, L., Barbel, S., Jan, L.Y. & Jan, Y.N. (1988 a). Identification of a component of Drosophila polar granules. Development 103, 625–40.CrossRefGoogle ScholarPubMed
Hay, B., Jan, L.Y. & Jan, Y.N. (1988b). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–87.CrossRefGoogle ScholarPubMed
Hay, B., Jan, L.Y. & Jan, Y.M. (1990). Localization of vasa a component of Drosophila polar granules in, maternal effect mutants that alter embryonic anteroposterior polarity. Development 109, 425–33.CrossRefGoogle Scholar
Holmgren, R., Livak, K., Morimoto, R., Freund, R. & Meselson, M. (1979). Studies of cloned sequences from four Drosophila heat shouck loci. Cell 18, 1359–70.CrossRefGoogle ScholarPubMed
Jongens, T.A., Hay, B., Jan, L.Y. & Jan, Y.N. (1992). The germ Cell-less gene product: a posteriorlu localized component mecessary form cell development in Drosophila. Cell 70, 569–84.CrossRefGoogle ScholarPubMed
Kim-Ha, J., Smith, J.L. & Macdonald, P.M. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte Cell 66, 2335.CrossRefGoogle Scholar
Knoblich, J.A. & Lehner, C.F. (1993). Synergistic action of Drosophila cyclins A and B during G2-M transition. EMBO J. 12, 6574.CrossRefGoogle Scholar
Kobayashi, S. & Okada, M. (1989). Restoration of pole-cell-forming of ability to u.v.-irradiated Drosophila embryos by injection of mitochondrial lrRNA Development 107, 733742.CrossRefGoogle ScholarPubMed
Kobayashi, S., Amikura, R. & Okada, M. (1993) Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster. Science 260, 15211524.CrossRefGoogle ScholarPubMed
Kobayashi, S. & Okada, M. (1990). Complete cDNA sequence encoding mitochondrial large ribosomal RNA of Drosophila melanogaster. Nucleic Acids Res. 18, 4592.CrossRefGoogle ScholarPubMed
Lantz, V., Ambrosio, L. & Schedl, P., (1992). The Drosophila orb gene is predicted to encode sex-specific germline RNA-binding proteins and has localized transcripts in ovaries and early embryos. Development 115, 7588.CrossRefGoogle ScholarPubMed
Lasko, P.F. (1992). Molecular-movements in oocyte patterning and pole cell-differentiation. BioEssays 14, 507–12.CrossRefGoogle ScholarPubMed
Lasko, P.F. & Ashburner, M. (1988). The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor 4A. Nature 355, 611–16.CrossRefGoogle Scholar
Lasko, P.F. & Ashburner, M. (1990). Posterior localization of vasa protein correlatesw with, but is not sufficient for, pole cell development. Genes Dev 4, 905–21.CrossRefGoogle Scholar
Lasky, L.A., Lev, Z., Xin, J., Britten, R.J. & Davidson, E.H. (1980). Messenger RNA prevalence in sea urchin embryos measured with cloned cDNAs. Proc. Natl. Acad. Sci. USA 77, 5317–21.CrossRefGoogle ScholarPubMed
Lehmann, R. & Nüsslein-Volhard, C. (1986). Abdominal segmentation, pole cell formation and embryonic polarity require the localised activity of oskar, a maternal gene in Drosophila. Cell 47, 141–52.CrossRefGoogle ScholarPubMed
Lehmann, R. & Nüsslein-Volhard, C. (1987). Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature 329, 167–70.CrossRefGoogle Scholar
Lehmann, R. & Nüsslein-Volhard, C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112,679–93.CrossRefGoogle Scholar
Lehner, C.F. & O'Farrell, P.H. (1990). The roles of Drosophila cyclins A and B in mitotic control. Cell 61, 535–47.CrossRefGoogle Scholar
Lehner, C.F.Ried, G., Stern, B. & Knoblich, J.A. (1992) cycins and cdc2 kinases in Drosophila: genetic analyses in a higher eukaryote. CIBA Foundation Symp. 170, 97114.Google Scholar
Lindquist, S. & Craig, E. (1988). The heat-shock proteins. Annu. Rev. Genet. 22, 631–77.CrossRefGoogle ScholarPubMed
Lipshitz, H.D. (1991). Axis specification in the Drosophila embryo. Cur. Opin. Cell Biol. 3,966–75.CrossRefGoogle ScholarPubMed
Macdonald, P.M. (1992). The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114, 221–32.CrossRefGoogle Scholar
Maldonado-Codina, G. & Glover, D.M. (1992). cyclin A and B associate with chromatin and polar regions of spindles, respectively, and do not undergo complete degradation at anaphase in syncytial Drosophila embryos. J. Cell Biol. 116,967–76.CrossRefGoogle Scholar
Maniatis, T.Fritsch, E.F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Manseau, L. & Schüpbach, T. (1989). cappuccino and spire: two unique maternal-effect loci required for both anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 3, 1437–52.CrossRefGoogle ScholarPubMed
Meyerowitz, E.M. & Hogness, D.S. (1982). Molecular organization of a Drosophila puff site that responds to ecdysone. Cell 28, 165–76.CrossRefGoogle ScholarPubMed
Olson, M. (1991). Genome structure and organization in Saccharomyces cerevisiae. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics. Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press.Google Scholar
Palazzolo, M.J., Hyde, D.R., VijayRaghavan, K., Mecklenburg, K., Benzer, S. & Meyerowitz, E. (1989). Use of a new strategy to isolate and characterize 436 Drosophila cDNA clones corresponding to RNAs detected in adult heads but not in early embryos. Neuron 3, 527–39.CrossRefGoogle ScholarPubMed
Palazzolo, M.J., Hamilton, B.A., Ding, D., Martin, C.H., Mead, D.A., Mierendorf, R.C., VijayRaghavan, K., Meyerowitz, E.M. & Lipshitz, H.D. (1990). Phage lambda cDNA cloning vectors for subtractive hybridization, fusion protein expression and Cre-loxP automatic plasmid subcloning. Gene 88, 2536CrossRefGoogle ScholarPubMed
Perrimon, N., Engstrom, L. & Mahowald, A.P. (1984). Analysis of the effects of zygotic lethal mutations on the germ line functions in Drosophila. Dev. Biol., 105, 404–14.CrossRefGoogle ScholarPubMed
Pruitt, S.C. (1988). Expression vectors permitting cDNA cloning and enrichment for specific sequences by hybridization/selection. Gene 66, 121–34.CrossRefGoogle ScholarPubMed
Raff, J.W., Whitfield, W.G.F. & Glover, D.M. (1990). Two distinct mechanisms localize cyclin B transcripts in syncytial Drosophila embryos. Development 110, 1249–61.CrossRefGoogle ScholarPubMed
Rebagliati, M.R., Weeks, D.L., Harvey, R.P. & Melton, D.A. (1985). Identification and cloning of maternal RNAs from Xenopus eggs. Cell 42, 769–77.CrossRefGoogle ScholarPubMed
Rubenstein, J.L.R., Brice, A.E.J., Ciaranello, R.D., Denney, D., Porteus, H. & Usdin, T.B. (1990). Subtractive hybridization system using single-stranded phagemids with directional inserts. Nucleic Acids Res. 18, 4833–42.CrossRefGoogle ScholarPubMed
Sambrook, J.,Fritsch, E.F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, N.Y.:Cold Spring Harbor Laboratory Press.Google Scholar
Sargent, T. & Dawid, I. (1983). Differential gene expression in the gastrula of Xenopus laevis. Science 222, 135–9.CrossRefGoogle ScholarPubMed
Schüpbach, T. & Wieschaus, E. (1986). Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch. Dev. Biol. 195, 302–17.CrossRefGoogle ScholarPubMed
Schüpbach, T. & Wieschaus, E. (1989). Female sterile mutations on the second chromosome of Drosophila melanogaster.I. Maternal effect mutations. Genetics 121, 101–17.CrossRefGoogle ScholarPubMed
Sive, H.L. & St John, T.. (1988). A simple subtractive hybridization technique employing photoactivable biotin and phenol extraction. Nucleic Acids Res. 16, 10937.CrossRefGoogle Scholar
St Johnston, D., Driever, W., Berleth, T.R.S. & Nüsslein-Volhard, C. (1989). Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107 (Suppl.), 1319.CrossRefGoogle Scholar
St Johnston, D., Beuchle, D. & Nüsslein-Volhard, C. (1991). staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 5163.CrossRefGoogle ScholarPubMed
St John, T.P. & Davis, R.W. (1979). Isolation of galactoseinducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization. Cell 16, 443–52.CrossRefGoogle ScholarPubMed
Struhl, G., Struhl, K. & Macdonald, P.M. (1989). The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259–73.CrossRefGoogle ScholarPubMed
Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qui, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M.,Metzstein, M., Hawkins, T., Ainscough, R. & Waterston, R. (1992). The C. elegans genome sequencing project: a beginning. Nature 356, 3741.CrossRefGoogle Scholar
Tautz, D. & Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–5.CrossRefGoogle ScholarPubMed
Tautz, D., Hancock, J.M.Webb, D.A.Tautz, C. & Dover, G.A. (1988). Complete sequences of the rRNA genes of Drosophila melanogaster. Mol. Biol. Evol. 5, 366–76.Google ScholarPubMed
Timblin, C., Battey, J. & Kuerhl, W.M. (1990). Application for PCR technology to subtractive cDNA cloning; identification of genes expressed specifically in murine plasmacytoma cells. Nuclei Acids Res. 18, 1587–93.CrossRefGoogle ScholarPubMed
Wang, C. & Lehmann, R. (1991). Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–47.CrossRefGoogle ScholarPubMed
Whitfield, W.G.F., Gonzalez, C., Sanchez-Herrero, E. & Glover, D.M. (1989). Transcripts of one of the two Drosophila cyclin genes become localized in pole cells during embryogenesis. Nature 388, 337–40.CrossRefGoogle Scholar
Wieschaus, E. (1980). A combined genetic and mosaic approach to the study of oogenesis in Drosophila. In Genetics and Neurobiology of Drosophila, ed. Siddiqi, O., Babu, P., Hall, J.C.. pp.8594. New York: Plenum Press.CrossRefGoogle Scholar
WohIwill, A.D. & Bonner, J.J. (1991). Genetic analysis of chromosome region 63 of Drosophila melanogaster. Genetics 128, 763–75.CrossRefGoogle Scholar
Zalokar, M. & Erk, I. (1976). Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Microsc. Biol. Cell 25, 97106.Google Scholar