Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T23:51:33.183Z Has data issue: false hasContentIssue false

Morphogenesis-related gene-expression profile in porcine oocytes before and after in vitro maturation

Published online by Cambridge University Press:  03 July 2017

Joanna Budna
Affiliation:
Department of Histology and Embryology, Department of Anatomy, Poznań University of Medical Sciences, 6 Święcickiego St., 60–781 Poznań, Poland.
Adrian Chachuła
Affiliation:
Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
Dominika Kaźmierczak
Affiliation:
Institute of Veterinary Sciences, Poznań University of Life Sciences, Poznań, Poland
Marta Rybska
Affiliation:
Institute of Veterinary Sciences, Poznań University of Life Sciences, Poznań, Poland
Sylwia Ciesiółka
Affiliation:
Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
Artur Bryja
Affiliation:
Department of Anatomy, Poznań University of Medical Sciences, Poznań, Poland
Wiesława Kranc
Affiliation:
Department of Anatomy, Poznań University of Medical Sciences, Poznań, Poland
Sylwia Borys
Affiliation:
Department of Anatomy, Poznań University of Medical Sciences, Poznań, Poland
Agnieszka Żok
Affiliation:
Department of Social Sciences, Poznań University of Medical Sciences, Poznań, Poland
Dorota Bukowska
Affiliation:
Institute of Veterinary Sciences, Poznań University of Life Sciences, Poznań, Poland
Paweł Antosik
Affiliation:
Institute of Veterinary Sciences, Poznań University of Life Sciences, Poznań, Poland
Małgorzata Bruska
Affiliation:
Department of Anatomy, Poznań University of Medical Sciences, Poznań, Poland
Klaus P. Brüssow
Affiliation:
Institute of Veterinary Sciences, Poznań University of Life Sciences, Poznań, Poland
Michał Nowicki
Affiliation:
Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland
Maciej Zabel
Affiliation:
Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
Bartosz Kempisty*
Affiliation:
Department of Histology and Embryology, Department of Anatomy, Poznań University of Medical Sciences, 6 Święcickiego St., 60–781 Poznań, Poland. Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, Poland Department of Anatomy, Poznań University of Medical Sciences, Poznań, Poland
*
All correspondence to: Bartosz Kempisty. Department of Histology and Embryology, Department of Anatomy, Poznań University of Medical Sciences, 6 Święcickiego St., 60–781 Poznań, Poland. Tel:. +48 61 8546418. Fax:+48 61 8546440, E-mail: bkempisty@ump.edu.pl

Summary

Mammalian oocyte maturation is achieved when oocytes reach metaphase II (MII) stage, and accumulate mRNA and proteins in the cytoplasm following fertilization. It has been shown that oocytes investigated before and after in vitro maturation (IVM) differ significantly in transcriptomic and proteomic profiles. Additionally, folliculogenesis and oogenesis is accompanied by morphogenetic changes, which significantly influence further zygote formation and embryo growth. This study aimed to determine new transcriptomic markers of porcine oocyte morphogenesis that are associated with cell maturation competence. An Affymetrix microarray assay was performed on an RNA template isolated from porcine oocytes before (n = 150) and after (n = 150) IVM. The brilliant cresyl blue (BCB) staining test was used for identification of cells with the highest developmental capacity. DAVID (Database for Annotation, Visualization, and Integrated Discovery) software was used for the extraction of the genes belonging to a cell morphogenesis Gene Ontology group. The control group consisted of freshly isolated oocytes. In total, 12,000 different transcripts were analysed, from which 379 genes were downregulated and 40 were upregulated in oocytes following IVM. We found five genes, SOX9, MAP1B, DAB2, FN1, and CXCL12, that were significantly upregulated in oocytes after IVM (in vitro group) compared with oocytes analysed before IVM (in vivo group). In conclusion, we found new transcriptomic markers of oocyte morphogenesis, which may be also recognized as significant mediators of cellular maturation capacity in pigs. Genes SOX9, MAP1B, DAB2, FN1, and CXCL12 may be involved in the regulation of the MII stage oocyte formation and several other processes that are crucial for porcine reproductive competence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

7

Both authors contributed equally to this work

References

Agung, B., Otoi, T., Fuchimoto, D., Senbon, S., Onishi, A. & Nagai, T. (2013). In vitro fertilization and development of porcine oocytes matured in follicular fluid. J. Reprod. Dev. 59, 103–6.CrossRefGoogle ScholarPubMed
Allen, E., Ding, J., Wang, W., Pramanik, S., Chou, J., Yau, V. & Yang, Y. (2005). Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438, 224–8.CrossRefGoogle ScholarPubMed
Alvarenga, F.C.L. (2006). Structural aspects of equine oocytes matured in vivo and in vitro . Brazil. J. Vet. Res. Anim. Sci. 23, 513–24.Google Scholar
Ara, T., Nakamura, Y., Egawa, T., Sugiyama, T., Abe, K., Kishimoto, T., Matsui, Y. & Nagasawa, T. (2003). Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc. Natl. Acad. Sci. USA 100, 5319–23.CrossRefGoogle ScholarPubMed
Assey, R.J., Hyttel, P., Greve, T., Purwantara, B. (1994). Oocyte morphology in dominant and subordinate follicles. Mol. Reprod. Dev. 37, 335–44.Google Scholar
Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J. & Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–19.CrossRefGoogle ScholarPubMed
Bahamonde, P.A., Tetreault, G.R., McMaster, M.E., Servos, M.R., Martyniuk, C.J. & Munkittrick, K.R. (2014). Molecular signatures in rainbow darter (Etheostoma caeruleum). inhabiting an urbanized river reach receiving wastewater effluents. Aquat. Toxicol. 148, 211–20.Google Scholar
Casillas, F., Teteltitla-Silvestre, M., Ducolomb, Y., Lemus, A.E., Salazar, Z., Casas, E. & Betancourt, M. (2014). Co-culture with granulosa cells improve the in vitro maturation ability of porcine immature oocytes vitrified with cryolock. Cryobiology 69, 299304.Google Scholar
Chen, L., Ge, Z.J., Wang, Z.B., Sun, T., Ouyang, Y.C., Sun, Q.Y. & Sun, Y.P. (2014). TGN38 is required for the metaphase I/anaphase I transition and asymmetric cell division during mouse oocyte meiotic maturation. Cell Cycle 13, 2723–32.Google Scholar
Cran, D.G., Moor, R.M. & Hay, M.F. (1980). Fine structure of the sheep oocyte during antral follicle development. J. Reprod. Fertil. 59, 125–32.CrossRefGoogle ScholarPubMed
Cran, D.G. (1985). Qualitative and quantitative structural changes during pig oocyte maturation. J. Reprod. Fertil. 74, 237–45.CrossRefGoogle ScholarPubMed
Douville, G. & Sirard, M.A. (2014). Changes in granulosa cells gene expression associated with growth, plateau and atretic phases in medium bovine follicles. J. Ova. Res. 7, 50.Google Scholar
Dumond, H., Al-Asaad, I., Chesnel, A., Chardard, D., Boizet-Bonhoure, B., Flament, S. & Kuntz, S. (2011). Temporal and spatial SOX9 expression patterns in the course of gonad development of the caudate amphibian Pleurodeles waltl . J. Exp. Zool. B 316B, 199211.CrossRefGoogle ScholarPubMed
Ericsson, S.A., Boice, M.L., Funahashi, H. & Day, B.N. (1993). Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology 39, 214.Google Scholar
Goossens, K., Van Soom, A., Van Zeveren, A., Favoreel, H. & Peelman, L.J. (2009). Quantification of fibronectin 1 (FN1). splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 9, 1.Google Scholar
Holt, J.E., Jackson, A., Roman, S.D., Aitken, R.J., Koopman, P. & McLaughlin, E.A. (2006). CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev. Biol. 293, 449–60.Google Scholar
Jackowska, M., Kempisty, B., Antosik, P., Bukowska, D., Budna, J., Lianeri, M., Rosinska, E., Woźna, M., Jagodzinski, P.P. & Jaśkowski, J.M. (2009). The morphology of porcine oocytes is associated with zona pellucida glycoprotein transcript contents. Reprod. Biol. 9, 7985.Google Scholar
Jamnongjit, M. & Hammes, S.R. (2005). Oocyte maturation: the coming of age of a germ cell. Semin. Reprod. Med. 23, 234–41.Google Scholar
Jeon, Y., Yoon, J.D., Cai, L., Hwang, S.U., Kim, E., Zheng, Z., Jeung, E., Lee, E. & Hyun, S.H. (2015). Zinc deficiency during in vitro maturation of porcine oocytes causes meiotic block and developmental failure. Mol. Med. Rep. 12, 5973–82.Google Scholar
Karami-Shabankareh, H. & Mirshamsi, S.M. (2012). Selection of developmentally competent sheep oocytes using the brilliant cresyl blue test and the relationship to follicle size and oocyte diameter. Small Rumin. Res, 105, 244–9.CrossRefGoogle Scholar
Kempisty, B., Piotrowska, H., Walczak, R., Śniadek, P., Dziuban, J., Bukowska, D., Antosik, P., Jackowska, M., Woźna, M. & Jaśkowski, J.M. (2011). Factors with an influence on mammalian oocytes developmental potential in light of molecular and microfluidic research. Medycyna Weterynaryjna, 67, 435–9.Google Scholar
Kempisty, B., Ziolkowska, A., Ciesiolka, S., Piotrowska, H., Antosik, P., Bukowska, D., Nowicki, M., Brüssow, K.P. & Zabel, M. (2014). Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells. J. Biol. Regul. Homeostat. Agents 28, 625–35.Google Scholar
Kidder, G.M. & Vanderhyden, B.C. (2010). Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 88, 399413.Google Scholar
Kind, K.L., Banwell, K.M., Gebhardt, K.M., Macpherson, A., Gauld, A., Russell, D.L. & Thompson, J.G. (2013). Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus–oocyte complexes. Reprod. Fertil. Dev. 25, 426–38.CrossRefGoogle ScholarPubMed
Kossowska-Tomaszczuk, K., De Geyter, C., De Geyter, M., Martin, I., Holzgreve, W., Scherberich, A. & Zhang, H. (2009). The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells 27, 210–9.Google Scholar
Lien, L.L., Feener, C.A., Fischbach, N. & Kunkel, L.M. (1994). Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15. Genomics 22, 273–80.Google Scholar
Mahdipour, M., Leitoguinho, A.R., Zacarias Silva, R.A., van Tol, H.T., Stout, T.A., Rodrigues, G. & Roelen, B.A. (2015). TACC3 is important for correct progression of meiosis in bovine oocytes. PLoS One 10, e0132591.Google Scholar
Mirshamsi, S.M., Karami-Shabankareh, H., Ahmadi-Hamedani, M., Soltani, L., Hajariana, H. & Abdolmohammadi, A.R. (2013). Combination of oocyte and zygote selection by brilliant cresyl blue (BCB). test enhanced prediction of developmental potential to the blastocyst in cattle. Anim. Reprod. Sci. 136, 245–51.Google Scholar
Mondadori, R.G., Santin, T.R., Fidelis, A.A.G., Name, K.P.O., da Silva, J.S., Rumpf, R. & Bao, S.N. (2010b). Ultrastructure of in vitro oocyte maturation in buffalo (Bubalus bubalis). Zygote 18, 309–14.Google Scholar
Muro, A.F., Chauhan, A.K., Gajovic, S., Iaconcig, A., Porro, F., Stanta, G. & Baralle, F.E. (2003). Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J. Cell Biol. 162, 149–60.CrossRefGoogle ScholarPubMed
Nishigaki, A., Okada, H., Okamoto, R., Shimoi, K., Miyashiro, H., Yasuda, K. & Kanzaki, H. (2013). The concentration of human follicular fluid stromal cell-derived factor-1 is correlated with luteinization in follicles. Gynecol. Endocrinol. 29, 230–4.CrossRefGoogle ScholarPubMed
Nishigaki, A., Okada, H., Okamoto, R., Sugiyama, S., Miyazaki, K., Yasuda, K. & Kanzaki, H. (2011). Concentrations of stromal cell-derived factor-1 and vascular endothelial growth factor in relation to the diameter of human follicles. Fertil. Steril., 95, 742–6.Google Scholar
Oreal, E., Mazaud, S., Picard, J.Y., Magre, S. & Carre-Eusebe, D. (2002). Different patterns of anti-Müllerian hormone expression, as related to DMRT1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Dev. Dynam. 225, 221–32.CrossRefGoogle ScholarPubMed
Ouandaogo, Z.G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R. & Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–47.CrossRefGoogle ScholarPubMed
Peters, D.D., Lepikhov, K., Rodenacker, K., Marschall, S., Boersma, A., Hutzler, P., Scherb, H., Walter, J. & de Angelis, M.H. (2009). Effect of IVF and laser zona dissection on DNA methylation pattern of mouse zygotes. Mamman. Genome 20, 664–73.CrossRefGoogle ScholarPubMed
Pujol, M., López-Béjar, M. & Paramio, M.T. (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61, 735–44.CrossRefGoogle ScholarPubMed
Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M. & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 7, 40.CrossRefGoogle ScholarPubMed
Robertson, S. & Lin, R. (2013). The oocyte-to-embryo transition. Adv. Exp. Med. Biol. 757, 351–72.Google Scholar
Roca, J., Martinez, E., Vazquez, J.M. & Lucas, X. (1998). Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 10, 479–85.Google Scholar
Rodríguez-González, E., López-Béjar, M., Velilla, E. & Paramio, M.T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–409.CrossRefGoogle ScholarPubMed
Schlessinger, D., Garcia-Ortiz, J.E., Forabosco, A., Uda, M., Crisponi, L. & Pelosi, E. (2010). Determination and stability of gonadal sex. J. Androl. 31, 1625.CrossRefGoogle ScholarPubMed
Solc, P., Kitajima, T.S., Yoshida, S., Brzakova, A., Kaido, M., Baran, V., Mayer, A., Samalova, P., Motlik, J. & Ellenberg, J. (2015). Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One, 10, e0116783.Google Scholar
Sreenivas, D., Kaladhar, D.S., Samy, A.P. & Kumar, R.S. (2012). Understanding mechanism of in vitro maturation, fertilization and culture of sheep embryoes through in silico analysis. Bioinformation 8, 1030–4.Google Scholar
Suzuki, H., Kanai-Azuma, M. & Kanai, Y. (2015). From sex determination to initial folliculogenesis in mammalian ovaries: morphogenetic waves along the anteroposterior and dorsoventral axes. Sex. Dev. 9, 190204.Google Scholar
Tesfaye, D., Ghanem, N., Carter, F., Fair, T., Sirard, M.A., Hoelker, M., Schellander, K. & Lonergan, P. (2009). Gene expression profile of cumulus cells derived from cumulus-oocyte complexes matured either in vivo or in vitro . Reprod. Fertil. Dev. 21, 451–61.Google Scholar
Trejter, M., Hochol, A., Tyczewska, M., Ziolkowska, A., Jopek, K., Szyszka, M., Malendowicz, L.K. & Rucinski, M. (2015). Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis. Int. J. Mol. Med. 35, 702–14.Google Scholar
Uyar, A., Torrealday, S. & Seli, E. (2013). Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 99, 979–97.Google Scholar
Von Stetina, J.R. & Orr-Weaver, T.L. (2011). Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb. Perspect. Biol. 3, a005553.CrossRefGoogle ScholarPubMed
Wang, Z., Tseng, C.P., Pong, R.C., Chen, H., McConnell, J.D., Navone, N. & Hsieh, J.T. (2002). The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J. Biol. Chem. 277, 12622–31.Google Scholar
Watson, A.J. (2007). Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J. Anim. Sci. 85, E1–3.CrossRefGoogle ScholarPubMed
Westernstroer, B., Terwort, N., Ehmcke, J., Wistuba, J., Schlatt, S. & Neuhaus, N. (2014). Profiling of Cxcl12 receptors, Cxcr4 and Cxcr7 in murine testis development and a spermatogenic depletion model indicates a role for Cxcr7 in controlling Cxcl12 activity. PLoS One 9, e112598.Google Scholar
Yang, Q.E., Kim, D., Kaucher, A., Oatley, M.J. & Oatley, J.M. (2013). CXCL12–CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J. Cell Sci. 126, 1009–20.Google Scholar
Yokoo, M. & Sato, E. (2004). Cumulus–oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 235, 251–91.Google Scholar
Zhang, Y., Duan, X., Cao, R., Liu, H.L., Cui, X.S., Kim, N.H., Rui, R. & Sun, S.C. (2014). Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development. Cell Cycle 13, 3390–403.Google Scholar
Zuccarello, D., Ferlin, A., Garolla, A., Menegazzo, M., Perilli, L., Ambrosini, G. & Foresta, C. (2011). How the human spermatozoa sense the oocyte: a new role of SDF1-CXCR4 signalling. Int. J. Androl. 34, e554–65.Google Scholar