Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T18:09:42.455Z Has data issue: false hasContentIssue false

Morphology of gametes, post-fertilization events and the effect of temperature on the embryonic development of Astyanax altiparanae (Teleostei, Characidae)

Published online by Cambridge University Press:  25 May 2016

Matheus Pereira dos Santos*
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
George Shigueki Yasui
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemesio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Pedro Luiz Porfírio Xavier
Affiliation:
Department of Veterinary Medicine–FZEA, University of São Paulo, Avenida Duque de Caxias Norte 225, Pirassununga, SP 13630–080, Brazil.
Nadya Soares de Macedo Adamov
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemesio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Nivaldo Ferreira do Nascimento
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
Takafumi Fujimoto
Affiliation:
Faculty of Fisheries Sciences, Hokkaido University, 3–1-1 Minato-cho, 041–8611, Hakodate, Japan.
José Augusto Senhorini
Affiliation:
Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemesio Pereira de Godoy, Pirassununga, SP 13630–970, Brazil.
Laura Satiko Okada Nakaghi
Affiliation:
Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil.
*
All correspondence to: Matheus Pereira dos Santos, Aquaculture Center, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884–900, Brazil. E-mail: matheuspereira@zootecnista.com.br

Summary

The aim of this study was to describe the morphology of gametes, post-fertilization events and subsequent temperature effects on the early developmental stages of the neotropical species Astyanax altiparanae. The sperm of this species presents a typical morphology of teleost sperm with a spherical head (diameter = 1.88 µm), midpiece (diameter = 0.75 µm) and a single flagellum (length = 18.67 µm). The extrusion of the second polar body and fusion of male and female pronucleus were reported for the first time in this species. Additionally, we observed the formation of the fertilization cone, which prevents polyspermic fertilization. Developmental stages at 22°C, 26°C and 30°C gave rise to fertilization rates at 91.12, 91.42 and 93.04% respectively. Hatching occurred at 25 hpf at 22°C, 16 hpf at 26°C and 11 hpf at 30°C and the hatching rates were 61.78%, 62.90% and 59.45%, respectively. At 22°C, the second polar body was extruded at ≈6 mpf and the male and female pronucleus fused at ≈10 mpf. This fundamental information is important for the field and opens up new possibilities in fish biotechnology, including micromanipulation and chromosome-set manipulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amanze, D. & Iyengar, A. (1990). The micropyle: a sperm guidance system in teleost fertilization. Development 109, 495500.CrossRefGoogle ScholarPubMed
Arai, K. (2001). Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197, 205–28.CrossRefGoogle Scholar
Brooks, S. & Johnston, I.A. (1994). Temperature and somitogenesis in embryos of the plaice (Pleuronectes platessa). J. Fish Biol. 45, 699702.CrossRefGoogle Scholar
Camus, P. & Koustikopoulos, C. (1984). Incubation experimentale et developpement embryonnaire de la daurade royale, Sparus aurata (L.), a differente temperatures. [Incubation and embryonic development of gilthead bream, Sparus aurata (L.), at a range of temperatures.] Aquaculture 42, 117–28.CrossRefGoogle Scholar
Cruz-Casallas, P.E., Lombo-Rodriguez, D.A. & Velasco-Santamaria, Y.M. (2005). Milt quality and spermatozoa morphology of captive Brycon siebenthalae broodstock. Aquac. Res. 36, 682–6.CrossRefGoogle Scholar
Dunham, R.A. (1990). Production and use of monosex or sterile fishes in aquaculture. Rev. Aquac. Sci. 2, 117.Google Scholar
Fribourgh, J.H., McClendon, D.E. & Soloff, B.L. (1970). Ultrastructure of the goldfish, Carassius auratus spermatozoon. Copeia 2, 274–9.CrossRefGoogle Scholar
Fujimoto, T., Kataoka, T., Sakao, S., Yamaha, E. & Arai, K. (2006). Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zool. Sc. 23, 977–89.CrossRefGoogle ScholarPubMed
Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M. & Brown, J.H. (2002). Effects of size and temperature on developmental time. Nature 417, 70–3.CrossRefGoogle ScholarPubMed
Ginsburg, A. S. (1968). Fertilization in Fishes and the Problem of Polyspermy. Izdatelnaya Nauka, Moskva, 354 pp.Google Scholar
Gjedrem, T. (2000). Genetic improvement of cold-water fish species. Aquac. Res. 31, 2533.CrossRefGoogle Scholar
Gorodilov, Y.N. (1996). Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Env. Biol. Fish. 47, 109–27.CrossRefGoogle Scholar
Hall, T.E., Smith, P. & Johnston, I.A. (2004). Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morph. 259, 255–70.CrossRefGoogle ScholarPubMed
Hart, N.H. (1990). Fertilization in teleost fishes: mechanisms of sperm–egg interactions. Int. Rev. Cytol. 121, 166.CrossRefGoogle ScholarPubMed
Hill, J. & Johnston, I. A. (1997). Temperature and neural development of the Atlantic herring (Clupea harengus L.). Comp. Biochem. Phys. 117, 457–62.CrossRefGoogle ScholarPubMed
Itono, M., Okabayashi, N., Morishima, K., Fujimoto, T., Yoshikawa, H., Yamaha, E. & Arai, K. (2007). Cytological mechanisms of gynogenesis and sperm incorporation in unreduced diploid eggs of the clonal loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J. Exp. Zool. Part A Ecol. Genet. Physiol. 307, 3550.CrossRefGoogle ScholarPubMed
Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes . Mech. Dev. 121, 605–18.CrossRefGoogle ScholarPubMed
Jamieson, B.G.M. (1991). Fish Evolution and Systematics: Evidence from Spermatozoa. Cambridge, UK: Cambridge University Press.Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253310.CrossRefGoogle ScholarPubMed
Komen, H. & Thorgaard, G.H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture 269, 150–73.CrossRefGoogle Scholar
Kudo, S. (1980). Sperm penetration and the formation of a fertilization cone in the common carp egg. Dev. Growth Differ. 22, 403–14.CrossRefGoogle ScholarPubMed
Maria, A.N., Azevedo, H., Santos, J.P., Silva, C.A. & Carneiro, P.C.F. (2010). Semen characterization and sperm structure of the Amazon tambaqui (Colossoma macropomum) . J. Appl. Ichthyol. 26, 779–83.CrossRefGoogle Scholar
Morrison, C.M., Miyake, T. & Wright, J.R. (2001). Histological study of development of the embryo and early larva of Oreochromis niloticus (Pisces, Cichlidae). J. Morphol. 247, 172–96.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Ninhaus-Silveira, et al. (2006). Seminal analysis, cryogenic preservation, and fertility in matrinxa fish, Brycon cephalus . Braz. Arch. Biol. Technol. 49, 651–9.CrossRefGoogle Scholar
Ohta, T., et al. (1993). Sperm morphology and distribution of intramenbranous particles in the sperm heads of selected freshwater teleosts. Tissue Cell 25, 725–35.CrossRefGoogle Scholar
Peruzzi, S., Rudolfsen, G., Primicerio, R., Frantzen, M. & Kaurić, G. (2009). Milt characteristics of diploid and triploid Atlantic cod (Gadus morhua L.). Aquac. Res. 40, 1160–9.CrossRefGoogle Scholar
Piferrer, F., Beaumontb, A., Falguièrec, J.C., Flajšhansd, M., Haffraye, P. & Colombo, L. (2009). Polyploidy fish and shellfish: Production, biology and applications to aquaculture for improvement and genetic containment. Aquaculture 293, 125–56.CrossRefGoogle Scholar
Rembold, M., Lahiri, K., Foulkes, N.S. & Wittbrodt, J. (2006). Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat. Protoc. 1, 1133–9.CrossRefGoogle ScholarPubMed
Rodrigues-Galdino, A.M., Maiolino, C.V., Forgati, M., Donatti, L., Mikos, J.D., Carneiro, P.C., & Rios, F.S. (2009). Development of the neotropical catfish Rhamdia quellen incubated in different temperature regimes. Zygote 18, 131–44.CrossRefGoogle Scholar
Saito, T., Goto-Kazeto, R., Arai, K. & Yamaha, E. (2008). Xenogenesis in teleost fish through generation of germ line chimeras by single primordial germ cell transplantation. Biol. Reprod. 78, 159–66.CrossRefGoogle ScholarPubMed
Summers, R.G. & Hylander, B.L. (1975). Species-specificity of acrosome reaction and primary gamete binding in echinoids. Exp. Cell Res. 96, 63–8.CrossRefGoogle ScholarPubMed
Veloso-Júnior, V.C., Guimarães-Cruz, R.J., Barros, M.D.M., Barata, R.S.L. & Santos, J.E. (2009). Reproduction of the lambari Astyanax scabripinnis in a small stream in southeastern Brazil. J. Appl. Ichthyol. 25, 314–20.CrossRefGoogle Scholar
Veríssimo-Silveira, R., Gusmão-Pompiani, P., Vicentini, C. A. & Quagio-Grassiotto, I. (2006). Spermiogenesis and spermatozoa ultrastructure in Salminus and Brycon, two primitive genera in Characidae (Teleostei: Ostariophysi: Characiformes). Acta Zool. 87, 305–13.CrossRefGoogle Scholar
Viveiros, A.T.M., et al. (2012). Spermatozoon ultrastructure and sperm cryopreservation of the Brazilian dry season spawner fish pirapitinga, Brycon nattereri . Aquacult Res. 43, 546–55.CrossRefGoogle Scholar
Yasui, G. S., Arias-Rodrigues, L., Fujimoto, T. & Arai, K. (2009). A sperm cryopreservation protocol for the loach Misgurnus anguillicaudatus and its applicability for other related species. Anim. Reprod. Sci. 116, 335–45.CrossRefGoogle ScholarPubMed
Yasui, G.S., Fujimoto, T., Sakao, S., Yamaha, E. & Arai, K. (2011). Production of loach (Misgurnus anguillicaudatus) germ-line chimera using transplantation of primordial germ cells isolated from cryopreserved blastomeres. J. Anim. Sci. 89, 2380–8.CrossRefGoogle ScholarPubMed
Yasui, G. S., Fujimoto, T., Arias - Rodrigues, L., Takagi, Y. & Arai, K. (2012). The effect of ions and cryoprotectants upon sperm motility and fertilization success in the loach Misgurnus anguillicaudatus . Aquaculture (Amsterdam) 344–9, 147–52.CrossRefGoogle Scholar
Yasui, G.S., Senhorini, J.A., Shimoda, E., Pereira-Santos, M., Nakaghi, L.S.O., Fujimoto, T., Arias-Rodrigues, L. & Silva, L.A. (2015). Improvement of gamete quality and its short-term storage: an approach for biotechnology in laboratory fish. Animal 9, 464–70.CrossRefGoogle ScholarPubMed