Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T14:59:38.776Z Has data issue: false hasContentIssue false

Oocyte adhesiveness and embryonic development of Astyanax bimaculatus (Linnaeus, 1758) (Pisces: Characidae)

Published online by Cambridge University Press:  02 May 2012

André Alberto Weber
Affiliation:
Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil.
Fábio Pereira Arantes
Affiliation:
Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil.
Yoshimi Sato
Affiliation:
Estação de Hidrobiologia e Piscicultura de Três Marias, Companhia de Desenvolvimento dos Vales do São Francisco e Parnaíba, P.O. Box 11, CEP: 39205-000, Três Marias, MG, Brasil.
Elizete Rizzo
Affiliation:
Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, P.O. Box 486, CEP: 30161-970, Belo Horizonte, MG, Brasil.
Nilo Bazzoli*
Affiliation:
Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil.
*
All correspondence to: N. Bazzoli. Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar, 500, CEP: 30535-610, Belo Horizonte, MG, Brasil. Tel: +55 31 33194936. Fax: +55 31 33194269. e-mail: bazzoli@pucminas.br

Summary

This study shows for the first time the presence of a jelly coat on oocytes of neotropical Characiformes fish. This structure could be responsible for the adhesiveness of Astyanax bimaculatus oocytes, a species widely distributed in South America including in the São Francisco River basin in Brazil. Adult specimens of A. bimaculatus were submitted to artificial reproduction in order to analyse the egg morphology and embryonic development. The eggs were fertilised and kept in incubators with a water temperature of 24°C so that embryogenesis could be monitored. Ovulated and unfertilised oocytes were also collected and submitted to routine histological techniques. Astyanax bimaculatus oocytes were found to be spherical, yellowish, and covered by a thin jelly coat with a slightly adhesive surface. The mean oocyte diameter was 1.03 ± 0.03 mm, the perivitelline space was 0.21 ± 0.02 mm and the jelly coat's thickness was 0.04 ± 0.01 mm. Positive periodic acid–Schiff (PAS) stain and Alcian blue stain pH 2.5 indicated the presence of neutral glycoproteins, and carboxylated acid glycoconjugates on the jelly coat that formed mucosubstances that may be associated with egg adhesiveness. At a water temperature of 24°C, blastopore closure and hatching occurred at 5 h and 17 h after fertilisation, respectively. The results of this study provide essential information for phylogenetic studies and for a better understanding of the reproductive strategy of A. bimaculatus, currently included in the incertae sedis group of the Characidae family due to the lack of monophyly among the families of the group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandre, J.S., Ninhaus-Silveira, A., Veríssimo-Silveira, R., Buzollo, H., Senhorini, J.A. & Chaguri, M.P. (2010). Structural analysis of the embryonic development in Brycon cephalus (Günther, 1869). Zygote 18, 173–83.CrossRefGoogle ScholarPubMed
Amorim, M.P., Gomes, B.V.C, Martins, Y.S., Sato, Y., Rizzo, E. & Bazzoli, N. (2009). Early development of the silver catfish Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Heptapteridae) from the São Francisco River Basin, Brazil. Aquacult. Res. 40, 172–80.CrossRefGoogle Scholar
Andrade, R.F., Bazzoli, N., Rizzo, E. & Sato, Y. (2001). Continuous gametogenesis in the neotropical freshwater teleost, Bryconops affinis (Pisces: Characidae). Tissue Cell 33, 524–32.CrossRefGoogle ScholarPubMed
Arcifa, M.S., Northcote, T.G. & Froelich, O. (1991). Interactive ecology of two cohabiting characins fishes (Astyanax fasciatus and Astyanax bimaculatus) in eutrophic Brazilian reservoir. J. Trop. Ecol. 7, 257–68.CrossRefGoogle Scholar
Blount, J.D. & Houston, D. C. (2000). Why egg yolk is yellow. Tree 15, 47–9.Google ScholarPubMed
Godinho, A.L., Lamas, I.R. & Godinho, H.P. (2010). Reproductive ecology of Brazilian freshwater fishes. Environ. Biol. Fish. 87, 143–62.CrossRefGoogle Scholar
Gomes, B.V.C., Scarpelli, R.S., Arantes, F.P., Sato, Y., Bazzoli, N. & Rizzo, E. (2007). Comparative oocyte morphology and early development in three species of trahiras from São Francisco River basin, Brazil. J. Fish Biol. 70, 1412–29.CrossRefGoogle Scholar
Gomes, R.Z., Sato, Y., Rizzo, E. & Bazzoli, N. (2011). Early development of Brycon orthotaenia (Pisces: Characidae). doi:10.1017/S0967199411000311.CrossRefGoogle Scholar
Groot, E.P. & Alderdice, D.F. (1985). Fine structure of the external egg membrane of five species of pacific salmon and steelhead trout. Can. J. Zool. 63, 552–66.CrossRefGoogle Scholar
Hansen, T.K. & Falk-Petersen, I.B. (2002). Growth and survival of first-feeding spotted wolffish (Anarhichas minor Olafsen) at various temperature regimes. Aquacult. Res. 33, 1119–27.CrossRefGoogle Scholar
Honorato-Sampaio, K., Santos, G.B., Bazzoli, N. & Rizzo, E., 2009: Observations on seasonal breeding biology and fine structure of the egg surface in the white piranha Serrasalmus brandtii from the São Francisco River basin, Brazil. J. Fish Biol. 75, 1874–82.CrossRefGoogle Scholar
Lima, F.C.T., Malabarba, L.R., Buckup, P.A., Pezzi da Silva, J F., Vari, R., Harold, P. A., et al. (2003). Genera incertae sedis in Characidae. In Checklist of the Freshwater Fishes of South and Central America (eds. Reis, R.E., Kullander, S.O. & Ferraris, C.J. Jr), pp. 106–68. Porto Alegre: Edipucrs.Google Scholar
Lubzens, E., Lissauer, L., Leavavi-Sivan, B., Avarre, J.C. & Sammar, M. (2003). Carotenoid and retinoid transport to fish oocytes and eggs: what is the role of retinol binding protein? Mol. Aspect Med. 24, 441–57.CrossRefGoogle ScholarPubMed
Lubzens, E., Young, G., Bobe, J. & Cerdà, J. (2010). Oogenesis in teleosts: how fish eggs are formed. Gen. Comp. Endocr. 165, 367–89.CrossRefGoogle ScholarPubMed
Kemp, A. (1994). Pathology in eggs, embryos, and hatchlings of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Copeia 1994, 935–43CrossRefGoogle Scholar
Kolm, N. & Ahnesjö, I. (2005). Do egg size and parental care coevolve in fishes? J. Fish Biol. 66, 1499–515.CrossRefGoogle Scholar
Martins, Y.S., Arantes, F.P., Sato, Y., Enemir, J.E., Rizzo, E. & Bazzoli, N. (2011). Comparative analysis of gonadal morphology in six fish species of the Incertae Sedis genera in Characidae of occurrence in the São Francisco River Basin, Brazil. Acta Zoologica, doi: 10.11 11/j.1463-6395.2010.00478.Google Scholar
Meijide, F.J. & Guerreiro, G.A. (2000). Embryonic and larval development of a substract-brooding cichlid Cichlasoma dimerus (Heckel, 1840) under laboratory conditions. J. Zool. Lond. 252, 481–93.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontinae). Zygote 14, 217–29.CrossRefGoogle Scholar
Perini, V.R., Sato, Y., Rizzo, E. & Bazzoli, N. (2010). Biology of eggs, embryos and larvae of Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Siluriformes). Zygote 18, 159–71.CrossRefGoogle Scholar
Riehl, R. (1996). The ecological significance of the egg envelope in teleosts with special reference to limnic species. Limnogica 26, 183–9.Google Scholar
Riehl, R. & Patzner, R.A. (1998). Minireview: The modes of egg attachment in teleost fishes. Ital. J. Zool. 65 (Suppl.), 415–20.CrossRefGoogle Scholar
Rizzo, E., Sato, Y. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61 (3), 615–32.CrossRefGoogle Scholar
Santos, J.E., Padilha, G.E.V., Bomcompagni-Júnior, O., Santos, G.B., Rizzo, E. & Bazzoli, N. (2006). Ovarian follicle growth in the catfish Iheringichthys labrosus (Siluriformes: Pimelodidae). Tissue Cell 38, 303–10.CrossRefGoogle ScholarPubMed
Sato, Y., Fenerich-Verani, N., Nuñer, A.P.O., Godinho, H.P. & Verani, J.R. (2003). Padrões reprodutivos de peixes da bacia do São Francisco. In Águas, peixes e pescadores do São Francisco das Minas Gerais. (eds. Godinho, H.P. & Godinho, A.L.), pp. 229–74. Belo Horizonte: CNPq/PADCT, Editora PUC Minas.Google Scholar
Solnica-Krezel, L. (2005). Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15 (6), 213–28.CrossRefGoogle ScholarPubMed
Sund, T. & Falk-Petersen, I.B. (2005). Effects of incubation temperature on development and yolk sac conversion efficiencies of spotted wolffish (Anarhichas minor Olafsen) embryos until hatch. Aquac. Res. 36, 1133–43.CrossRefGoogle Scholar
Suzuki, H.I., Agostinho, A.A. & Winemiller, K.O. (2000). Relationship between oocyte morphology and reproductive strategy in loricariid catfishes of the Paraná River, Brazil. J. Fish Biol. 57, 791807.CrossRefGoogle Scholar
Weitzman, S.H. & Malabarba, L.R. (1998). Perspectives about the phylogeny and classification of the Characidae (Teleostei: Characiformes). In Phylogeny and Classification of Neotropical fishes (eds. Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, Z.M.S. & Lucena, C.A.S.), pp. 161–70. Porto Alegre: Edipucrs.Google Scholar
Winemiller, K.O. & Rose, K.A. (1992). Patterns of life-history diversification in North American fishes: implications for population regulation. Can. J. Fish Aquat. Sci. 49, 2196–218.CrossRefGoogle Scholar
Zelazowska, M. (2010). Formation and structure of egg envelopes in Russian sturgeon Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae). J. Fish Biol. 76, 694706.CrossRefGoogle ScholarPubMed