Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T07:25:20.722Z Has data issue: false hasContentIssue false

Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes

Published online by Cambridge University Press:  09 September 2015

J. Zapata-Martínez
Affiliation:
Departamento de Biología del Desarrollo (INSIBIO), Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
M.F. Medina
Affiliation:
Departamento de Biología del Desarrollo (INSIBIO), Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
M.C. Gramajo-Bühler
Affiliation:
Departamento de Biología del Desarrollo (INSIBIO), Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
G. Sánchez-Toranzo*
Affiliation:
Departamento de Biología del Desarrollo (INSIBIO), Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina.
*
All correspondence to: Graciela Sánchez-Toranzo. Departamento de Biología del Desarrollo (INSIBIO), Chacabuco 461, 4000 – San Miguel de Tucumán, Argentina. Fax: +54 381 4248025. E-mail: gsancheztoranzo@hotmail.com

Summary

Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajmat, M.T., Bonilla, F., Zelarayán, L. & Bühler, M.I. (2011). Participation of inositol triphosphate and ryanodine receptors in Bufo arenarum oocyte activation. Zygote 19, 171–80.Google Scholar
Ajmat, M.T., Bonilla, F., Hermosilla, P.C., Zelarayán, L. & Bühler, M.I. (2013). Role of phospholipase A2 pathway in regulating activation of Bufo arenarum oocytes. Zygote 21, 214–20.CrossRefGoogle ScholarPubMed
Amtmann, E. (1996). The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. Drugs Exp. Clin. Res. 22, 287–94.Google Scholar
Bement, W.M. & Capcom, D.G. (1989). Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs. J. Cell Biol. 108, 885–92.Google Scholar
Berridge, M.J. (1989). The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, lithium, and cell signaling. J. Am. Med. Ass. 262, 1834–41.CrossRefGoogle ScholarPubMed
Berridge, M.J. (1993). Cell signalling. A tale of two messengers. Nature 365, 388–9.Google Scholar
Berridge, M.J. & Irvine, R.F. (1989). Inositol phosphates and cell signalling. Nature 341, 197205.CrossRefGoogle ScholarPubMed
Biden, T.J., Prugue, M.L. & Davison, A.G. (1992). Evidence for phosphatidylinositol hydrolysis in pancreatic islets stimulated with carbamoylcholine. Kinetic analysis of inositol polyphosphate metabolism. Biochem. J. 285, 541–9.Google Scholar
Bühler, M.I., Petrino, T. & Legname, A. (1987). Sperm nuclear transformation and aster formation related to metabolic behavior in amphibian eggs. Dev. Growth Differ. 29, 177–84.Google Scholar
Cibelli, G., Corsi, P., Diana, G., Vitiello, F. & Thiel, G. (2001). Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways. Eur. J. Neurosci. 13, 1339–48.Google Scholar
Clark, J.D., Schievella, A.R., Nalefski, E.A. & Lin, L.L. (1995). Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 12, 83117.CrossRefGoogle ScholarPubMed
Flower, R.J. & Blackwell, G.J. (1976). The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem. Pharmacol. 25, 285–91.CrossRefGoogle ScholarPubMed
Galan, J., Tramkina, M., Noel, R., Sprague, E. & Ward, W. (1991). Neomycin affects insulin internalization in rat hepatocytes. FASEB J. 5, A757.Google Scholar
Gee, N.S., Ragan, C.I., Watling, K.J., Aspley, S., Jackson, R.G., Reid, G.G., Gani, D. & Shute, JK. (1988). The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem. J. 249, 883–9.Google Scholar
Giordano, O.S., Guerreiro, E., Pestchanker, M.J., Guzmán, J., Pastor, D. & Guardia, T. (1990). The gastric cytoprotective effect of several sesquiterpene lactones. J. Nat. Prod. 53, 803–9.CrossRefGoogle ScholarPubMed
Giordano, O.S., Pestchanker, M.J., Guerreiro, E., Saad, J.R., Enriz, R.D., Rodriguez, A.M., Jauregui, E.A., Guzman, J., Maria, A.O. & Wendel, G.H. (1992). Structure–activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 35, 2452–8.CrossRefGoogle ScholarPubMed
Halet, G., Marangos, P., Fitzharris, G. & Carroll, J. (2003). Ca2+ oscillations at fertilization in mammals. Biochem. Soc. Trans. 31, 907–11.CrossRefGoogle ScholarPubMed
Iba, T., Yano, Y., Umeno, M., Hinokio, K., Kuwahara, A., Irahara, M., Yamano, S. & Yasui, T. (2012). Roscovitine in combination with calcium ionophore induces oocyte activation through reduction of M-phase promoting factor activity in mice. Zygote 20, 321–5.CrossRefGoogle ScholarPubMed
Iorio, E., Ricci, A., Bagnoli, M., Pisanu, M.E., Castellano, G., Di Vito, M., Venturini, E., Glunde, K., Bhujwalla, Z.M., Mezzanzanica, D., Canevari, S. & Podo, F. (2010). Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 70, 2126–35.CrossRefGoogle ScholarPubMed
Lee, T.S., Ono, K., Miyamoto, S., Hadama, T. & Arita, M. (2006). Distinction between steady-state inactivation and voltage-dependent facilitation in L-type Ca2+ channel alpha1c and alpha1c/beta subunits. J. UOEH. 28, 277–86.Google Scholar
Lloyd, A.C., Davies, S.A., Crossley, I., Whitaker, M., Houslay, M.D., Hall, A., Marshall, C.J. & Wakelam, MJ. (1989). Bombesin stimulation of inositol 1,4,5-trisphosphate generation and intracellular calcium release is amplified in a cell line overexpressing the N-ras proto-oncogene. Biochem. J. 260, 813–9.Google Scholar
Lu, Q., Chen, Z.J., Gao, X., Ma, SY., Li, M., Hu, J.M. & Li, Y. (2006). Oocyte activation with calcium ionophore A23187 and puromycin on human oocytes that fail to fertilize after intracytoplasmic sperm injection. Zhonghua Fu Chan Ke Za Zhi 41, 182–5.Google Scholar
Maruyama, Y. (1993). Control of inositol polyphosphate-mediated calcium mobilization by arachidonic acid in pancreatic acinar cells of rats. J. Physiol. 463, 729–46.Google Scholar
Medina, M.F., Bühler, M.I. & Sánchez-Toranzo, G. (2014). Chemical activation in Rhinella arenarum oocytes: effect of dehydroleucodine (DhL) and its hydrogenated derivative (2H-DhL). Zygote doi: 10.1017 /SO967199414000641 [Epub ahead of print].Google Scholar
Nakagawa, K., Yamano, S., Moride, N., Yamashita, M., Yoshizawa, M. & Aono, T. (2001). Effect of activation with Ca ionophore A23187 and puromycin on the development of human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil. Steril. 76, 148–52.Google Scholar
Oterino, J., Sanchez Toranzo, G., Zelarayán, L., Valz-Gianinet, J.N. & Bühler, M.I. (2001). Cortical granule exocytosis in Bufo arenarum oocytes matured in vitro . Zygote 9, 251–9.CrossRefGoogle ScholarPubMed
Petcoff, D.W., Holland, W.L. & Stith, B.J. (2008). Lipid levels in sperm, eggs, and during fertilization in Xenopus laevis . J. Lipid Res. 49, 2365–78.CrossRefGoogle ScholarPubMed
Rowles, S.J. & Gallacher, D.V. (1996). Ins(1,3,4,5)P4 is effective in mobilizing Ca2+ in mouse exocrine pancreatic acinar cells if phospholipase A2 is inhibited. Biochem. J. 319, 913–8.Google Scholar
Runft, L.L., Jaffe, L.A. & Mehlmann, L.M. (2002). Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237–54.Google Scholar
Runft, L.L., Carroll, D.J., Gillett, J., Giusti, A.F., O’Neill, F.J. & Foltz, K.R. (2004). Identification of a starfish egg PLC-gamma that regulates Ca2+ release at fertilization. Dev. Biol. 269, 220–36.CrossRefGoogle ScholarPubMed
Schacht, J. (1978). Purification of polyphosphoinositides by chromatography on immobilized neomycin. J. Lipid Res. 19, 1063–7.CrossRefGoogle ScholarPubMed
Thompson, A., Mostafapour, S.P., Denlinger, L., Bleasdale, J.E. & Fisher, S.K. (1991). The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J. Biol. Chem. 266, 23856–62.Google Scholar
Vichera, G., Alfonso, J., Duque, C.C., Silvestre, M.A., Pereyra-Bonnet, F., Fernández-Martín, R. & Salamone, D. (2010). Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reprod. Domest. Anim. 45, e30612.Google Scholar
Wang, N., Du, C.Q. & Wang, S.S. (2004). D609 induces vascular endothelial cells and marrow stromal cells differentiation into neuron-like cells. Acta Pharmacol. Sin. 25, 442–6.Google ScholarPubMed
Wang, N., Sun, C., Huo, S., Zhang, Y., Zhao, J., Zhang, S. & Miao, J. (2008). Cooperation of phosphatidylcholine-specific phospholipase C and basic fibroblast growth factor in the neural differentiation of mesenchymal stem cells in vitro . Int. J. Biochem. Cell Biol. 40, 294306.Google Scholar
Whitaker, M. (2006). Calcium microdomains and cell cycle control. Cell Calcium 40, 585–92.Google Scholar
Yamada, M., Yamada, M. & Richelson, E (1992). Block of neurotensin receptor down-regulation by an aminosteroid in N1E-115 cells. Eur. J. Pharmacol. 226, 187–8.Google Scholar