Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T09:26:14.311Z Has data issue: false hasContentIssue false

Spermatogenesis in Leptodactylus chaquensis. Histological study

Published online by Cambridge University Press:  22 November 2012

Ana Lucrecia Iruzubieta Villagra
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Chacabuco 461, (4000) Tucumán, Argentina.
Susana Beatriz Cisint
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Chacabuco 461, (4000) Tucumán, Argentina.
Claudia Alejandra Crespo
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Chacabuco 461, (4000) Tucumán, Argentina.
Marcela Fátima Medina
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Chacabuco 461, (4000) Tucumán, Argentina.
Inés Ramos
Affiliation:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Tucumán, Chacabuco 461, (4000) Tucumán, Argentina.
Silvia Nélida Fernández*
Affiliation:
Superior Institute of Biological Research, National University of Tucumán, Chacabuco 461, Tucumán 4000, Argentina.
*
All correspondence to: Silvia N. Fernández. Superior Institute of Biological Research, National University of Tucumán, Chacabuco 461, Tucumán 4000, Argentina. Tel: +54 0381 424 7752/7005. Fax: +54 0381 424 7752/7044. e-mail: sfernandez@fbqf.unt.edu.ar

Summary

The organization and the histological characteristics of Leptodactylus chaquensis testis throughout the reproductive cycle were analyzed in the presented study. Gonads of adult males, processed with routine techniques for optical microscopy, revealed that during the reproductive period the seminiferous tubules were characterized by presentation of a large number of cysts, germ cells at the same maturation stage supported by Sertoli cells. All the germ line cells were also present in the postreproductive period and maintained their morphological characteristics. Primary spermatogonia were large-sized cells found isolated or in small groups. The rest of the cells of the germ line formed cysts. Secondary spermatogonia showed morphological characteristics similar to their predecessors, although they were smaller. Primary and secondary spermatocytes showed images of the different stages of the first and second meiotic division respectively. One finding was the presence of intercytoplasmic bridges between the secondary spermatocytes. Primary spermatids were rounded cells with an acrosomal vesicle associated with the nucleus and had cysts that were characterized by large intercellular spaces. Secondary spermatids were elongated cells with a well defined acrosome, which in the spermatozoa had the shape of an arrowhead. Another peculiar characteristic of this species was the fusion of the walls of the seminiferous tubule with the efferent duct that formed a path for spermatozoa during spermiation. The presence in the seminiferous tubules of all stages of the spermatogenic line during the two periods of the cycle studied indicated that Leptodactylus chaquensis had a potentially continuous reproductive cycle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, M.J.L.V., Fernandes, A.P., Báo, S.N. & Recco-Pimentel, S.M. (1999). An ultrastructural study of spermiogenesis in three species of Physalaemus (Anura, Leptodactylidae). Biocell 23, 211–21.Google Scholar
Aoki, A., Vitale-Calpe, R. & Pisanó, A. (1969). The testicular interstitial tissue of the amphibian Physalaemus fuscomaculatus . Z. Zellforsch. Mikrosk. Anat. 98, 916.CrossRefGoogle Scholar
Canosa, L.F. & Ceballos, N.R. (2002). In vitro hCG and human recombinant FSH actions on testicular steroidogenesis in the toad Bufo arenarum . Gen. Comp. Endocrinol. 126, 318–24.Google Scholar
Canosa, L.F., Pozzi, A.G., Rosemblit, C. & Ceballos, N.R. (2003). Steroid production in toads. J. Steroid Biochem. Mol. Biol. 85, 227–33.Google Scholar
Cavicchia, J.C. & Moviglia, G.A. (1983). The blood–testis barrier in the toad (Bufo arenarum Hensel): a freeze-fracture and lanthanum tracer study. Anat. Rec. 205, 387–96.Google Scholar
Delgado, M.J., Gutiérrez, P. & Alonso-Bedate, M. (1989). Seasonal cycles in testicular activity in the frog, Rana perezi . Gen. Comp. Endocr. 73, 111.CrossRefGoogle ScholarPubMed
Ferreira, A., Mehanna, M. & Prado, C.P. (2008). Morphologic and morphometric analysis of testis of Pseudis limellum (Cope, 1862) (Anura, Hylidae) during the reproductive cycle in the Pantanal, Brazil. Biocell 32 (2), 185–94.Google Scholar
Gilbert, S. (2000). Developmental Biology USA: Sinauer Associates, Inc. pp. 1749.Google Scholar
Grier, H.J. (1992). Chordate testis: the extracellular matrix hypothesis. J. Exp. Zool. 261, 151–60.Google Scholar
Guo, G.Q. & Zheng, G.C. (2004). Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. J. Theor. Biol. 229, 139–46.Google Scholar
Hermosilla, B.I., Urbina, P.A. & Cabrera, P.J.C. (1983). Espermatogénesis en la Rana chilena Caudiverbera caudiverbera (Linne, 1758) (Anura Leptodactylidae). Bol. Soc. Biol. Conc. 54, 103–15.Google Scholar
Itoh, M., Inoue, M. & Ishii, S. (1990). Annual cycle of pituitary and plasma gonadotropins and sex steroids in a wild population of the toad, Bufo japonicus . Gen. Comp. Endocrinol. 78, 242–53.Google Scholar
Lee, Y.H. & Kwon, A.S. (1992). Ultrastructure of spermiogenesis in Hyla japonica (Anura, Amphibia). Acta Zool. (Stockholm) 73, 4955.CrossRefGoogle Scholar
Lofts, B. (1974). Reproduction. In: Physiology of the Amphibian. 1st edn (ed. Lofts, B.), New York: Academic Press. pp. 107218.Google Scholar
Lo Nostro, F.L., Grier, H., Meijide, F.J. & Guerrero, G.A. (2003). Ultrastructure of the testis in Synbranchus marmoratus (Teleostei, Synbranchidae): the germinal compartment. Tissue Cell 35, 121–32.Google Scholar
Miething, A. (2010). Local desynchronization of cellular development within mammalian male germ cell clones. Ann. Anat. 192, 247–50.Google Scholar
Montero, R. & Pisanó, A. (1990). Ciclo espermatogénico de dos especies de Telmatobius del noroeste argentino. Amphibia-Reptilia 11, 97110.Google Scholar
Montero, R. & Pisanó, A. (1992). El ciclo espermatogénico anual de Hyla pulchella andina: un análisis numérico. Acta Zoológica Lilloana 41, 173–80.Google Scholar
Oliveira, C. & Vicentini, C.A. (1998). Descrição anatômica dos testículos e corpos adiposos de Scinax fuscovarius (Anura, Hylidae). Biociências 6, 7988.Google Scholar
Oliveira, C. & Zieri, R. (2005). Pigmentação testicular em Physalaemus nattereri (Steindachner) (Amphibia Anura) com observações anatômicas o sistema pigmentar extracutâneo. Rev. Bras. Zool. 22, 454–60.Google Scholar
Oliveira, C., Zanetoni, C. & Zieri, R. (2002). Morphological observations on the testes of Physalaemus cuvieri (Amphibia, Anura). Rev. Chil. Anat. 20, 263–8.Google Scholar
Oliveira, C., Sant'Anna, A.C., Omena, P.M., Santos, L.R.S. & Zieri, R. (2003). Morphological considerations on the seminiferous structures and testes of anuran amphibians: Bufo crucifer, Physalaemus cuvieri e Scinax fuscovarius . Biociências 1, 3946.Google Scholar
Paniagua, R., Fraile, B. & Sáez, F.J. (1990). Effects of photoperiod and temperature on testicular function in amphibians. Histol. Histopathol. 5, 365–78.Google Scholar
Phillips, D.M. (1974). Spermiogenesis. New York and London: Academic Press, pp 168.Google Scholar
Pudney, J. (1995). Spermatogenesis in nonmammalian vertebrates. Microsc. Res. Techniq. 32, 459–97.Google Scholar
Raisman, J.S., de Cunio, R.W., Cabada, M.O., del Pino, E.J. & Mariano, M.I. (1980). Acrosome breakdown in Leptodactylus chaquensis (Amphibia, Anura) spermatozoa. Dev. Growth Differ. 22, 289–97.Google Scholar
Rastogi, R.K., Di Meglio, M., Di Matteo, M., Minucci, S. & Iela, L. (1985). Morphology and cell population kinetics of primary spermatogonia in the frog (Rana esculenta) (Amphibia, Anura). J. Zool. 207, 319–30.Google Scholar
Rastogi, R.K., Bagnara, J.T., Iela, L. & Krasovich, M.A. (1988). Reproduction in the Mexican leaf frog Pachymedusa dacnicolor. IV. Spermatogenesis: a light ultrasonic study. J. Morphol. 197, 277302.CrossRefGoogle ScholarPubMed
Santos, L.R.S. & Oliveira, C. (2008). Histological aspects and structural characteristics of the testes of Dendropsophus minutus (Anura, Hylidae). Micron 39, 1266–70.Google Scholar
Sasso-Cerri, E., de Faria, F.P., Freymüller, E. & Miraglia, S.M. (2004). Testicular morphological changes during the seasonal reproductive cycle in the bullfrog Rana catesbeiana . J. Exp. Zool. 301A, 249–60.Google Scholar
Taboga, S.R. & Dolder, M.A.H. (1991). Análise histológica da espermatogênese de Hyla ranki (Amphibia, Anura, Hylidae). Brazil J. Morphol. Sci. 8, 6671.Google Scholar
van Oordt, P.G.W.J. (1960). The influence of the internal and external factors in the regulation of the spermatogenic cycle in amphibia. Symp. Zool. Soc. Lond. 2, 2952.Google Scholar