Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:24:47.810Z Has data issue: false hasContentIssue false

Supplementation of culture medium with quercetin improves mouse blastocyst quality and increases the expression of HIF-1α protein

Published online by Cambridge University Press:  27 February 2023

Nuria Hernández-Rollán*
Affiliation:
Assisted Reproduction Unit, Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain Cryopreservation Facility, Instituto de Biomedicina de Sevilla (IBIs), Seville, Spain
Soledad Sánchez-Mateos
Affiliation:
Assisted Reproduction Unit, Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
Marta López-Morató
Affiliation:
Assisted Reproduction Unit, Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain Genetics Unit, Hospital HLA Vistahermosa, Alicante, Spain
Francisco M. Sánchez-Margallo
Affiliation:
Assisted Reproduction Unit, Centro de Cirugía de Mínima Invasión Jesús Usón, Cáceres, Spain
Ignacio S. Álvarez*
Affiliation:
Department of Cell Biology, Universidad de Extremadura, Badajoz, Spain Instituto Extremeño de Reproducción Asistida (IERA), Badajoz, Spain
*
Author for correspondence: Nuria Hernández-Rollán. Centro de cirugía de mínima invasión Jesús Usón. C/ Carretera N-521, Km 41.8, 10071, Cáceres, Spain. E-mail: nuriahernandezrollan@gmail.com Ignacio S. Álvarez. Dpto. Biología Celular, Facultad de Medicina, Universidad de Extremadura, 06071, Badajoz, Spain. E-mail: ialvarez@unex.es
Author for correspondence: Nuria Hernández-Rollán. Centro de cirugía de mínima invasión Jesús Usón. C/ Carretera N-521, Km 41.8, 10071, Cáceres, Spain. E-mail: nuriahernandezrollan@gmail.com Ignacio S. Álvarez. Dpto. Biología Celular, Facultad de Medicina, Universidad de Extremadura, 06071, Badajoz, Spain. E-mail: ialvarez@unex.es

Summary

Regarding the low number of embryos that reach the blastocyst stage when cultured in vitro, this study aimed to evaluate the effects of quercetin on pre-implantation mouse (Mus musculus) embryos obtained using in vitro fertilization, especially during the passage from morula to blastocyst. Furthermore, we studied whether quercetin also affected the expression of hypoxia-inducible factor 1α (HIF-1α). The culture medium for the embryos was supplemented with quercetin, for long or short periods of time, and then the development potential, total cell number, apoptosis rates and expression of HIF-1α were studied to determine the effect of quercetin. Embryos failed to develop when cultured for long periods of time with quercetin, implying the possible toxic effects of this, alternatively antioxidant, compound. However, a short culture from morula to blastocyst significantly improved the development potential of in vitro produced embryos, increasing the final total cell number and reducing the apoptosis rate, observing similar results to those embryos cultured in low-oxygen concentrations or developed in utero. Furthermore, in embryos treated with quercetin for 2 or 4 h we found an increase in HIF-1α compared with untreated embryos. This work could imply a way to use quercetin in fertility clinics to improve the production of healthy blastocysts and, consequently, increase the success rates in assisted reproduction techniques.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aherne, S. A. and O’Brien, N. M. (2000). Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radical Biology and Medicine, 29(6), 507514. doi: 10.1016/s0891-5849(00)00360-9 CrossRefGoogle ScholarPubMed
Bishop, D. W. (1957). Metabolic conditions within the oviduct of the rabbit. International Journal of Fertility and Sterility, 2, 1122.Google Scholar
Bogacz, A., Mikołajczak, P. Ł, Wolek, M., Górska, A., Szulc, M., Ożarowski, M., Kujawski, R., Czerny, B., Wolski, H., Karpiński, T. M. and Seremak-Mrozikiewicz, A., et al. (2021) Combined effects of methyldopa and flavonoids on the expression of selected factors related to inflammatory processes and vascular diseases in human placenta cells-an in vitro study. Molecules, 26(5), 1259. doi: 10.3390/molecules26051259 CrossRefGoogle ScholarPubMed
Boots, A. W., Haenen, G. R. and Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2–3), 325337. doi: 10.1016/j.ejphar.2008.03.008 CrossRefGoogle ScholarPubMed
Cao, Y., Zhao, H., Wang, Z., Zhang, C., Bian, Y., Liu, X., Zhang, C., Zhang, X. and Zhao, Y. (2020). Quercetin promotes in vitro maturation of oocytes from humans and aged mice. Cell Death and Disease, 11(11), 965. doi: 10.1038/s41419-020-03183-5 CrossRefGoogle ScholarPubMed
Caramelo, C., Peña Deudero, J. J., Castilla, A., Justo, S., De Solis, A. J., Neria, F., Peñate, S. and Gonzalez-Pacheco, F. R. (2006). Response to hypoxia. A systemic mechanism based on the control of gene expression. Medicina, 66(2), 155164.Google ScholarPubMed
Carbone, M. C., Tatone, C., Delle Monache, S., Marci, R., Caserta, D., Colonna, R. and Amicarelli, F. (2003). Antioxidant enzymatic defences in human follicular fluid: Characterization and age-dependent changes. Molecular Human Reproduction, 9(11), 639643. doi: 10.1093/molehr/gag090 CrossRefGoogle ScholarPubMed
Carroll, V. A. and Ashcroft, M. (2006). Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel–Lindau function: Implications for targeting the HIF pathway. Cancer Research, 66(12), 62646270. doi: 10.1158/0008-5472.CAN-05-2519 CrossRefGoogle ScholarPubMed
Cushnie, T. P. and Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343356. doi: 10.1016/j.ijantimicag.2005.09.002.CrossRefGoogle ScholarPubMed
De Matos, D. G., Gasparrini, B., Pasqualini, S. R. and Thompson, J. G. (2002). Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology, 57(5), 14431451. doi: 10.1016/s0093-691x(02)00643-x CrossRefGoogle ScholarPubMed
Dong, G. Z., Kim, C. Y., Cho, W. S., Shin, Y. J. and Lee, K. (2006). Cryoprotective role of the flavonoid quercetin in mammalian cells. Korean Journal of Genetics, 28, 269277.Google Scholar
Dunwoodie, S. L. (2009). The role of hypoxia in development of the mammalian embryo. Developmental Cell, 17(6), 755773. doi: 10.1016/j.devcel.2009.11.008 CrossRefGoogle ScholarPubMed
Ferrali, M., Signorini, C., Caciotti, B., Sugherini, L., Ciccoli, L., Giachetti, D. and Comporti, M. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Letters, 416(2), 123129. doi: 10.1016/s0014-5793(97)01182-4 CrossRefGoogle ScholarPubMed
Fischer, B. and Bavister, B. D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Journal of Reproduction and Fertility, 99(2), 673679. doi: 10.1530/jrf.0.0990673 CrossRefGoogle ScholarPubMed
Gardiner, C. S. and Reed, D. J. (1995). Synthesis of glutathione in the preimplantation mouse embryo. Archives of Biochemistry and Biophysics, 318(1), 3036. doi: 10.1006/abbi.1995.1200 CrossRefGoogle ScholarPubMed
Guérin, P., El Mouatassim, S. and Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175189. doi: 10.1093/humupd/7.2.175 CrossRefGoogle ScholarPubMed
Hashemzaei, M., Delarami Far, A., Yari, A., Heravi, R. E., Tabrizian, K., Taghdisi, S. M., Sadegh, S. E., Tsarouhas, K., Kouretas, D., Tzanakakis, G., Nikitovic, D., Anisimov, N. Y., Spandidos, D. A., Tsatsakis, A. M. and Rezaee, R. (2017). Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncology Reports, 38(2), 819828. doi: 10.3892/or.2017.5766 CrossRefGoogle ScholarPubMed
Heijnen, C. G., Haenen, G. R., Oostveen, R. M., Stalpers, E. M. and Bast, A. (2002). Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radical Research, 36(5), 575581. doi: 10.1080/10715760290025951 CrossRefGoogle ScholarPubMed
Hernández, N., López-Morató, M., Perianes, M. J. and Sánchez-Mateo, S., Cassa-rua, V., Domínguez-Arroyo, J. A., Sánchez-Margallo, F. M. and Álvarez, I. S. (2020). 4-Hydroxyestradiol improves mouse embryo quality, epidermal growth factor-binding capability in vitro and implantation rates. Molecular Human Reproduction, 1, 17.Google Scholar
Hu, J., Chen, L., Lei, F., Tian, Y., Xing, D.-M., Chai, Y.-S., Zhao, S., Ding, Y. and Du, L. J. (2012). Investigation of quercetin stability in cell culture medium: Role in in vitro experiment. African Journal of Pharmacy and Pharmacology, 6(14), 10691076.Google Scholar
Jeon, H., Kim, H., Choi, D., Kim, D., Park, S. Y., Kim, Y. J., Kim, Y. M. and Jung, Y. (2007). Quercetin activates an angiogenic pathway, hypoxia inducible factor (HIF)-1-vascular endothelial growth factor, by inhibiting HIF-prolyl hydroxylase: A structural analysis of quercetin for inhibiting HIF-prolyl hydroxylase. Molecular Pharmacology, 71(6), 16761684. doi: 10.1124/mol.107.034041 CrossRefGoogle ScholarPubMed
Kang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M. and Lee, B. C. (2016). Effect of antioxidant flavonoids (quercetin and taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasian Journal of Animal Sciences, 29(3), 352358. doi: 10.5713/ajas.15.0341 CrossRefGoogle ScholarPubMed
Kang, M. H., Das, J.-H. K., Gurunathan, S., Park, H. W., Song, H., Park, C. and Kim, J. H. (2017). The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: A mechanistic study. Theranostics, 7(19), 47354752. doi: 10.7150/thno.21662 CrossRefGoogle ScholarPubMed
Karampour, N. S., Arzi, A., Varzi, H. N., Mohammadian, B. and Rezaei, M. (2014). Quercetin preventive effects on theophylline-induced anomalies in rat embryo. Jundishapur Journal of Natural Pharmaceutical Products, 9(3), e17834. doi: 10.17795/jjnpp-17834 Google Scholar
Kazuo, U., Taijiro, M., Takashi, S., Tadashi, H., Machiko, T., Yoichi, K. and Shozo, T. (1977). In vitro transformation of hamster embryo cells by quercetin. Toxicology Letters, 1(3), 175178. doi: 10.1016/0378-4274(77)90009-1 CrossRefGoogle Scholar
Kere, M., Siriboon, C., Lo, N. W., Nguyen, N. T. and Ju, J. C. (2013). Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. Journal of Reproduction and Development, 59(1), 7884. doi: 10.1262/jrd.2012-114 CrossRefGoogle ScholarPubMed
Khanduja, K. L., Verma, A. and Bhardwaj, A. (2001). Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation. Andrologia, 33(5), 277281. doi: 10.1046/j.1439-0272.2001.00432.x Google ScholarPubMed
Lee, S. K., Oh, K. H., Chung, A. Y., Park, H. C., Lee, S. H., Kwon, S. Y. and Choi, J. (2015). Protective role of quercetin against cisplatin-induced hair cell damage in zebrafish embryos. Human and Experimental Toxicology, 34(11), 10431052. doi: 10.1177/0960327114567766 CrossRefGoogle ScholarPubMed
Luberda, Z. (2005). The role of glutathione in mammalian gametes. Reproductive Biology, 5(1), 517.Google ScholarPubMed
Ma, Y. Y., Chen, H. W. and Tzeng, C. R. (2017). Low oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro . Journal of Ovarian Research, 10(1), 47. doi: 10.1186/s13048-017-0344-1 CrossRefGoogle ScholarPubMed
Mantikou, E., Bontekoe, S., van Wely, M., Seshadri, S., Repping, S. and Mastenbroek, S. (2013). Low oxygen concentrations for embryo culture in assisted reproductive technologies. Human Reproduction Update, 19(3), 209. doi: 10.1093/humupd/dms055 CrossRefGoogle ScholarPubMed
Martín-Romero, F. J., Miguel-Lasobras, E. M., Domínguez-Arroyo, J. A., González-Carrera, E. and Álvarez, I. S. (2008). Contribution of culture media to oxidative stress and its effect on human oocytes. Reproductive Biomedicine Online, 17(5), 652661. doi: 10.1016/s1472-6483(10)60312-4 CrossRefGoogle ScholarPubMed
Mastroianni, L. Jr. and Jones, R. (1965). Oxygen tension within the rabbit fallopian tube. Journal of Reproduction and Fertility, 9, 99102. doi: 10.1530/jrf.0.0090099 CrossRefGoogle ScholarPubMed
Mishra, A., Reddy, I. J., Gupta, P. S. and Mondal, S. (2016). l-Carnitine mediated reduction in oxidative stress and alteration in transcript level of antioxidant enzymes in sheep embryos produced in vitro. Reproduction in Domestic Animals, 51(2), 311321. doi: 10.1111/rda.12682 CrossRefGoogle ScholarPubMed
Mlcek, J., Jurikova, T., Skrovankova, S. and Sochor, J. (2016). Quercetin and its anti-allergic immune response. Molecules, 21(5), 623. doi: 10.3390/molecules21050623 CrossRefGoogle ScholarPubMed
Morin, S. J. (2017). Oxygen tension in embryo culture: Does a shift to 2% O2 in extended culture represent the most physiologic system? Journal of Assisted Reproduction and Genetics, 34(3), 309314. doi: 10.1007/s10815-017-0880-z CrossRefGoogle ScholarPubMed
Moskaug, J. Ø., Carlsen, H., Myhrstad, M. C. and Blomhoff, R. (2005). Polyphenols and glutathione synthesis regulation. American Journal of Clinical Nutrition, 81(1) Suppl., 277S283S. doi: 10.1093/ajcn/81.1.277S CrossRefGoogle ScholarPubMed
Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R. and Moskaug, J. Ø. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology and Medicine, 32(5), 386393. doi: 10.1016/s0891-5849(01)00812-7 CrossRefGoogle ScholarPubMed
Nagao, A., Seki, M. and Kobayashi, H. (1999). Inhibition of xanthine oxidase by flavonoids. Bioscience, Biotechnology, and Biochemistry, 63(10), 17871790. doi: 10.1271/bbb.63.1787 CrossRefGoogle ScholarPubMed
Nakayama, T., Yamada, M., Osawa, T. and Kawakishi, S. (1993). Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochemical Pharmacology, 45(1), 265267. doi: 10.1016/0006-2952(93)90402-i.Google ScholarPubMed
Paternot, G., Debrock, S., D’Hooghe, T. M. and Spiessens, C. (2010). Early embryo development in a sequential versus single medium: A randomized study. Reproductive Biology and Endocrinology: RB&E, 8, 83. doi: 10.1186/1477-7827-8-83 CrossRefGoogle Scholar
Pérez-Pastén, R., Martínez-Galero, E. and Chamorro-Cevallos, G. (2010). Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. Journal of Pharmacy and Pharmacology, 62(8), 10031009. doi: 10.1111/j.2042-7158.2010.01118.x CrossRefGoogle ScholarPubMed
Pringle, K. G., Kind, K. L., Sferruzzi-Perri, A. N., Thompson, J. G. and Roberts, C. T. (2010). Beyond oxygen: Complex regulation and activity of hypoxia inducible factors in pregnancy. Human Reproduction Update, 16(4), 415431. doi: 10.1093/humupd/dmp046 CrossRefGoogle ScholarPubMed
Rocha-Frigoni, N. A. S., Leão, B. C. S., Dall’Acqua, P. C. and Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86(8), 18971905. doi: 10.1016/j.theriogenology.2016.06.009 CrossRefGoogle Scholar
Sameni, H. R., Javadinia, S. S., Safari, M., Tabrizi Amjad, M. H., Khanmohammadi, N., Parsaie, H. and Zarbakhsh, S. (2018). Effect of quercetin on the number of blastomeres, zona pellucida thickness, and hatching rate of mouse embryos exposed to actinomycin D: An experimental study. International Journal of Reproductive Biomedicine, 16(2), 101108. doi: 10.29252/ijrm.16.2.101 Google ScholarPubMed
Sepúlveda, S., Garcia, J., Arriaga, E., Diaz, J., Noriega-Portella, L. and Noriega-Hoces, L. (2009). In vitro development and pregnancy outcomes for human embryos cultured in either a single medium or in a sequential media system. Fertility and Sterility, 91(5), 17651770. doi: 10.1016/j.fertnstert.2008.02.169 CrossRefGoogle ScholarPubMed
Sills, E. S. and Palermo, G. D. (2010). Human blastocyst culture in IVF: Current laboratory applications in reproductive medicine practice. Romanian Journal of Morphology and Embryology, 51(3), 441445.Google ScholarPubMed
Sovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F., Lopes, F. G. and Leal, C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals = Zuchthygiene, 52(4), 561569. doi: 10.1111/rda.12946 CrossRefGoogle ScholarPubMed
Steptoe, P. C., Edwards, R. G. and Purdy, J. M. (1971). Human blastocysts grown in culture. Nature, 229(5280), 132133. doi: 10.1038/229132a0 CrossRefGoogle ScholarPubMed
Tao, P., Zhou, W., Yan, X., Wu, R., Cheng, L., Ye, Y., Wang, Z. and Li, Y. (2022). Effect of sequential versus single-step culture medium on IVF treatments, including embryo and clinical outcomes: A prospective randomized study. Archives of Gynecology and Obstetrics, 305(3), 757765. doi: 10.1007/s00404-021-06219-z CrossRefGoogle ScholarPubMed
Thompson, J., Feil, D., Edwards, L., Lane, M. and Karen, K. (2004). Mouse fetal development is perturbed by culture in low oxygen concentration that increases expression of oxygen-sensitive genes via hypoxia inducible factors: A non-epigenetic embryonic programming phenomenon? In Abstracts. p. 547. The Society for the Study of Reproduction.Google Scholar
Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is abasic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 55105514. doi: 10.1073/pnas.92.12.5510 CrossRefGoogle Scholar
Webster, W. S. and Abela, D. (2007). The effect of hypoxia in development. Birth Defects Research. Part C, Embryo Today: Reviews, 81(3), 215228. doi: 10.1002/bdrc.20102 CrossRefGoogle ScholarPubMed
Whitten, W. K. (1969). The effect of oxygen on cleavage of mouse eggs. In Abstracts of the 2nd Annual Meeting p. 29. Society for the Study of Reproduction, Davis.Google Scholar
Wigger, M., Kisielewska, K., Filimonow, K., Plusa, B., Maleszewski, M. and Suwińska, A. (2017). Plasticity of the inner cell mass in mouse blastocyst is restricted by the activity of FGF/MAPK pathway. Scientific Reports, 7(1), 15136. doi: 10.1038/s41598-017-15427-0.CrossRefGoogle ScholarPubMed
Yang, C. S., Fang, M., Lambert, J. D., Yan, P. and Huang, T. H. (2008). Reversal of hypermethylation and reactivation of genes by dietary polyphenolic compounds. Nutrition Reviews, 66(Suppl 1) Suppl. 1(suppl_1):S18S20, S18–S20. doi: 10.1111/j.1753-4887.2008.00059.x CrossRefGoogle ScholarPubMed
Yoon, J., Juhn, K. M., Ko, J. K., Yoon, S. H., Ko, Y., Lee, C. Y. and Lim, J. H. (2013). Effects of oxygen tension and IGF-I on HIF-1α protein expression in mouse blastocysts. Journal of Assisted Reproduction and Genetics, 30(1), 99105. doi: 10.1007/s10815-012-9902-z CrossRefGoogle ScholarPubMed
Yu, S., Long, H., Lyu, Q. F., Zhang, Q. H., Yan, Z. G., Liang, H. X., Chai, W. R., Yan, Z., Kuang, Y. P. and Qi, C. (2014). Protective effect of quercetin on the development of preimplantation mouse embryos against hydrogen peroxide-induced oxidative injury. PLOS ONE, 9(2), e89520. doi: 10.1371/journal.pone.0089520 CrossRefGoogle ScholarPubMed