Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:47:20.925Z Has data issue: false hasContentIssue false

Toxicity of cryoprotectants agents in freshwater prawn embryos of Macrobrachium amazonicum

Published online by Cambridge University Press:  26 September 2014

Arthur Vinícius Lourenço Ferreira*
Affiliation:
Dept of Biology, State University of Ceara, UECE, Fortaleza, CE, 60740–000, Brazil.
Elias José Teles Castro
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, Brazil.
Mariana Silva Alves Barbosa
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, Brazil.
Míriam Luzia Nogueira Martins de Sousa
Affiliation:
Postgraduate Program in Veterinary Science, UECE, Fortaleza, CE, Brazil.
Manoel Paiva de Araújo Neto
Affiliation:
Laboratory of Ecology of Mangroves, Federal Institute of Education, Science and Technology of Ceará, IFCE, Acaraú, CE, Brazil.
Aldeney Andrade Soares Filho
Affiliation:
Dept of Fishing Engineering, Federal University of Ceará, UFC, Fortaleza, CE, Brazil.
Celia Maria de Souza Sampaio
Affiliation:
Dept of Biology, State University of Ceará, UECE, Fortaleza, CE, Brazil.
*
All correspondence to: Arthur Vinícius Lourenço Ferreira. Dept of Biology, State University of Ceara, UECE, Fortaleza, CE, 60740–000, Brazil. Tel:/Fax: +85 3101 9927. E-mail: arthurvinicius.lf@gmail.com

Summary

The process of cooling and cryopreservation of prawn embryos is a viable alternative for a continuous supply of larvae for freshwater prawn farming ponds. However, studies involving the application of those techniques as well as on toxicity of cryoprotectants in freshwater prawn embryos are scarce. Thus, this study aims to test the toxicity of methylic alcohol (MET), dimethyl sulfoxide (DMSO) and ethylene glycol (EG) on Macrobrachium amazonicum embryos. For the present experiment, pools of embryos were taken from 15 M. amazonicum females and were divided into three groups and tested in duplicate at concentrations of 10, 5, 3; 1, 0.5 or 0.1%. Toxicity tests were conducted for 24 h in Falcon® pipes to obtain the lethal concentration for 50% of the larvae (LC50). After the set period for testing, random samples of embryos were removed for morphological analysis under stereoscopic microscopes. Results were analysed using analysis of variance (ANOVA) and Tukey's test at a 5% significance level and Trimmed Spearman-Karber Analysis to determine LC50-24 h. DMSO toxicity tests revealed that 5% and 10% concentrations showed the highest toxicity and differed from the control (P ≤ 0.05), 24h-LC50 was 437.4 ± 14.4 µL. MET was less toxic among the tested cryoprotectants and concentrations did not allow the determination of its LC50-24h. For tests with EG, concentrations of 3, 5 or 10% solutions resulted in a 100% mortality to tested embryos; EG was the tested cryoprotectant with the highest toxicity, with an LC50-24h average of 81.91 ± 35.3 µl.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahammad, M.M., Bhattacharyya, D. & Jana, B.B. (1998). Effect of different concentrations of cryoprotectant and extender on the hatching of Indian major Carp embryos (Labeo rohita, Catla catla and Cirrhinus mrigala) stored at low temperature. Cryobiology 37, 318–24.CrossRefGoogle ScholarPubMed
Akarasanon, K., Damrongphol, P. & Poolsanguan, W. (2004). Long-term cryopreservation of the spermatophore of the giant freshwater prawn, Macrobrachium rosenbergii (de Man). Aquac. Res. 35, 1415–20.CrossRefGoogle Scholar
Alvarenga, M.A., Landim-Alvarenga, F.C., Moreira, R.M. & Cesarino, M.M. (2000). Acrosomal ultrastructure os stallion spermatozoa cryopreserved with ethylene glycol using two packaging systems. Equine Vet. J. 32, 541–5.CrossRefGoogle Scholar
Aye, M., Giorgio, C.D., Mo, M.D., Botta, A., Perrin, J. & Courbiere, B. (2010). Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–12.CrossRefGoogle ScholarPubMed
Barceloux, D.G., Bond, G.R. & Krenzelok, E.P. (2002). American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J. Toxicol. Clin. Toxicol. 40, 415–6.Google ScholarPubMed
Birge, W.J., Black, J.A. & Westerman, A.G. (1985). Short-term fish and amphibian tests for determining the effects of toxicant stress on early life stages and estimating chronic values for single compounds and complex effluents. Environ. Toxicol. Chem. 49, 808–10.Google Scholar
Brayton, C.F. (1986). Dimethyl sulfoxide (DMSO): a review. Cornell. Vet. 76, 7690.Google ScholarPubMed
Boyd, C. & Zimmermann, S. (2010). Grow-out systems – water quality and soil management. In: New, M.B., Valenti, W.C., Tidwell, J.H., D’Abramo, L.R. & Kutty, M.N. Freshwater Prawns Biology and Farming USA: Blackwell Publishing Ltd, pp. 25–7.Google Scholar
Buratini, S.V., Bertoletti, E. & Zagatto, P.A. (2004). Evaluation of Daphnia similis as test species in ecotoxicological assays. Bull. Environ. Contam. Toxicol. 73, 878–82.CrossRefGoogle ScholarPubMed
Caramalac, L.S. & Hayd, L.A. (2010). Desenvolvimento larval de Macrobrachium amazonicum em laboratório submetido a diferentes salinidades. In: Anais do Encontro de iniciação científica – ENIC. Campo Grande, Mato Grosso do Sul.Google Scholar
Carvalho, F.J.M.O. (1997). Reprodução de crustáceos peneídeos: Endocrinologia e ultraestrutura da ovogênese. Porto: UP. 297 pp. Tese (Doutorado) – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto.Google Scholar
Carpenter, R.J., Angel, M.F. & Morgan, R.F. (1994). Dimethyl sulfoxide increases the survival of primarily ischemic island skin flaps. Otolaryngol. Head Neck Surg. 110, 228–31.CrossRefGoogle ScholarPubMed
Cavalli, R.O., Montakan, T., Lavens, P. & Sorgeloos, P. (2001). Variations in lipid classes and fatty acid content in tissues of wild Macrobrachium rosenbergii (de Man) females during maturation. Aquaculture 193, 311–24.CrossRefGoogle Scholar
Carney, E. 1999. Ethylene glycol developmental toxicity: unraveling the roles of glycolic acid and metabolic acidosis. Toxicol. Sci. 50, 117–26.CrossRefGoogle ScholarPubMed
Chasin, A.A.M., & Pedrozo, M.F.M. (2003) O estudo da toxicologia. In: Azevedo, F.A. & Chasin, A.A.M. (Org.). As Bases Toxicológicas da Ecotoxicologia. São Carlos: RIMa. 340 pp.Google Scholar
Corley, R.A., Bartels, M.J., Carney, E.W., Weitz, K.K., Soelberg, J.J., Gies, R.A. & Thrall, K.D. (2005). Development of a physiologically based pharmacokinetic model for ethylene glycol and its metabolite, glycolic acid, in rats and humans. Toxicol. Sci. 85, 476–90.CrossRefGoogle ScholarPubMed
Dinnyés, A., Urbányi, B., Baranyau, B. & Magyary, I. (1998). Chilling sensitivity of Carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology 50, 113.CrossRefGoogle ScholarPubMed
Gaylor Chemical Company (2007). Dimethyl sulfoxide (DMSO) health and safety information. Slidell. Bull. 106, 16 pp.Google Scholar
Green, J. (1965). Chemical embryology of the crustacea. Biol. Rev. Camb. 40, 580600.CrossRefGoogle ScholarPubMed
Gwo, J.C. & Lin, C.H. (1998). Preliminary experiments on the cryopreservation of penaeid shrimp (Penaeus japonicus) embryos, nauplii and zoea. Theriogenology 49, 1289–99.CrossRefGoogle ScholarPubMed
Hagedorn, M., Kleinhans, F.W., Wildt, D.E. & Rall, W.F. (1997). Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology 34, 251–63.CrossRefGoogle ScholarPubMed
Hamilton, M., Russo, R. & Thurston, R. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 11, 714–9.CrossRefGoogle Scholar
Hunter, J. E., Bernard, A., Fuller, B., Amso, N. & Shaw, R. W. (1991). Fertilization and development of the human oocyte following exposure to cryoprotectants, low temperatures and cryopreservation: a comparison of two techniques. Hum. Reprod. 6, 1460–5.CrossRefGoogle ScholarPubMed
Kotyagina, V., Platov, E. & Rombe, S. (1963). The fertility of stallion semen preserved at a temperature of –78ºC. Anim. Breed Abstr. 31, 458.Google Scholar
Ling, S.W. (1969). The general biology and development of Macrobrachium rosenbergii (De Man). FAO. Fish. Rep. 57, 589606.Google Scholar
Lovelock, J.E. & Bishop, M.W.H. (1959). Preservation of freezing damage to living cells by dimethyl sulphoxide. Nature 183, 1394–5.CrossRefGoogle Scholar
Maciel, C.R. & Valenti, W.C. (2009). Biology, fisheries, and aquaculture of the Amazon River prawn Macrobrachium amazonicum: a review. Nauplius 17, 6179.Google Scholar
McMartin, K.E. & Wallace, K.B. (2005). Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol. Sci. 84, 195200.CrossRefGoogle ScholarPubMed
Mendez, A. (2003). Lupus Eritromatoso sisitêmico. Revista Bioquímica e Ortomolecular 12, 30–1.Google Scholar
Methanex (2008). Ficha de dados de segurança – Metanol. Methanex Corporation, 10 pp.Google Scholar
Müller, Y.M.R., Nazari, E.M., Simões-Costa, M.S. (2003). Embryonic stages of the freshwater prawn Macrobrachium olfersii (Decapoda, Palaemonidae). J. Crust. Biol. 23, 869–75.CrossRefGoogle Scholar
Neves, P.R. (2008). Utilização de crioprotetores intra e extracelulares em embriões de pacu (Piaractus mesopotamicus). Maringá: UEM. 71 pp. Tese de Doutorado – Universidade Estadual de Maringá.Google Scholar
Newton, H., Fisher, J., Arnold, J.R.P., Pegg, D.E., Faddy, M.J. & Gosden, R.G. (1998). Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum. Reprod. 13, 376–80.CrossRefGoogle ScholarPubMed
Newton, S.S. & Subramoniam, T. (1996). Cryoprotectant toxicity in penaeid prawn embryos. Cryobiology 33, 172–7.CrossRefGoogle Scholar
Niemann, H. (1991). Cryopreservation of ova and embryos from livestock: current status and research needs. Theriogenology 35, 109–24.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F. & Azevedo, A. (2006). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontinae). Zygote 14, 217–29.CrossRefGoogle Scholar
Ninhaus-Silveira, A., Foresti, F., Azevedo, A., Agostinho, C.A. & Verissimo-Silveira, R. (2008). Cryogenic preservation of embryos of Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontinae). Zygote 17, 4555.CrossRefGoogle Scholar
Otsuki, S., Quina, W., Ishihara, A. & Kae, T. (2002). Elucidation of dimethylsulfone metabolism in rat using a 35S radioisotope tracer method. Nutr. Res. 22, 313–22.CrossRefGoogle Scholar
Pitombeira, L.F., Nilin, J. & Costa-Lotufo, L.V. (2009). Análise da toxicidade de solventes orgânicos (Dimetilsulfóxido, metanol, etanol e acetona) em náuplios de Artemia sp . In: Anais do IX Congresso de Ecologia do Brasil. Ecologia e o futuro da Biosfera. São Lourenço, Minas Gerais.Google Scholar
Robertson, S.M. & Laurence, A.L. (1988). Toxicity of the cryoprotectants glycerol, dimethyl sulfoxide, ethylene glycol, methanol, sucrose, and sea salt solutions to the embryos of red drum. Prog. Fish Cul. 50, 148–54.2.3.CO;2>CrossRefGoogle Scholar
Sansone, G., Nascimento, I.A. & Leite, M.B.N.L. (2005). Toxic effects of cryoprotectants on oyster gametes and embryos: a preliminary step towards establishing cryopreservation protocols. Biociências 13, 11–8.Google Scholar
Streit, D.P. Jr (2005). Crioprotetores e resfriamento de embriões de pacu (P. mesopotamicus). Maringá: UEM. 73 pp. Tese de Doutorado – Universidade Estadual de Maringá.Google Scholar
Streit, D.P., Digmayer, M., Ribeiro, R.P., Sirol, R.N., Moraes, G.V.E & Galo, J.M. (2007). Embriões de pacu submetidos a diferentes protocolos de resfriamento. Pesqu Agropecu Bras. 42, 1119–202.Google Scholar
Urbányi, B., Baranyai, B., Magyary, I. & Dinnyés, A. (1997). Toxicity of methanol, DMSO and glycerol on Carp (Cyprinus carpio) embryos in different developmental stages. Theriogenology 47, 408.CrossRefGoogle Scholar
Zampolla, T., Spikings, E., Zhang, T. & Rawson, D.M. (2009). Effect of methanol and Me2SO exposure on mitochondrial activity and distribution in stage III ovarian follicles of zebrafish (Danio rerio). Cryobiology 59, 188–94.CrossRefGoogle ScholarPubMed
Zhang, T. & Rawson, D.M. (1995). Studies on chilling sensitivity of zebrafish (Brachydanio rerio) embryos. Cryobiology 32, 239–46.CrossRefGoogle Scholar
Zimmermann, S. (1998). Manejo da qualidade de água e do solo dos viveiros. In: Valenti, W.C. Carcinicultura de água doce: Tecnologia Para a Produção de camarões. Brasília: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. pp. 217–38.Google Scholar