No CrossRef data available.
Published online by Cambridge University Press: 06 June 2023
Two wideband bandstop filters (BSFs) for single and dual-band are proposed and then extended to reflectionless BSFs based on the analysis from input impedance/admittance perspective. Also, topologies of higher-number-stopband input-reflectionless BSF are provided to broaden the design scope. Open/shorted coupled lines are adopted to obtain multi transmission zeros and desired stopband bandwidth by adjusting the even-/odd-mode impedance of coupled lines. Resistor-loaded coupled lines are connected with Port 1 to absorb unwanted signals and obtain input-reflectionless behavior. For validation of the proposed theory analysis, BSFs with corresponding absorptive prototypes are constructed and measured.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.