No CrossRef data available.
Published online by Cambridge University Press: 07 November 2024
In transonic flow conditions, buffeting associated with finite-amplitude lift fluctuations can limit the operational envelope of an aircraft. For both airfoils and wings, these oscillations have been linked to global flow instabilities that arise from a Hopf bifurcation. We employ a combination of numerical simulations and global stability analysis to investigate the near-critical behaviour of the oscillatory buffet-onset instability on airfoils. The flow is governed by the unsteady Reynolds-averaged Navier–Stokes equations, with a basic state provided by a steady-state solution. In the weakly nonlinear formulation, the disturbance amplitude is described by the Landau equation. The linear growth rate can be determined from either the simulations or the stability analysis, and the Landau constant is derived from simulations resulting in finite-amplitude equilibrium states. The results show that the Landau constant is nearly independent of Mach number and angle of attack for a given airfoil. Using the Landau constant derived from a small number of simulations, the stability analysis can be employed to efficiently capture the essential finite-amplitude behaviour needed to estimate the buffet-onset boundary. The stability analysis is shown to capture the envelope of lift oscillations during a continuous pitch of an airfoil, from pre-buffet through post-buffet lift levels.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.