Article contents
Limit Sets of Typical Homeomorphisms
Published online by Cambridge University Press: 20 November 2018
Abstract
Given an integer $n\,\ge \,3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu $ on $X$, we prove that for the typical homeomorphism $f\,:\,X\,\to \,X$, it is true that for $\mu $-almost every point $x$ in $X$ the limit set $\omega (f,\,x)$ is a Cantor set of Hausdorff dimension zero, each point of $\omega (f,\,x)$ has a dense orbit in $\omega (f,\,x)$, $f$ is non-sensitive at each point of $\omega (f,\,x)$, and the function $a\,\to \,\omega (f,\,a)$ is continuous at $x$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012