Published online by Cambridge University Press: 01 January 2024
Waste brownfield-site soils contaminated with heavy metals such as Zn and Cr are of critical environmental concern because of the rapid urbanization and industrialization that is occurring in China. Thermal treatment can fix heavy metals in specific mineral structures, which might be a promising technology for remediation and reutilization of the metal-contaminated soils. The objective of the present study was to elucidate the stabilization mechanisms of Zn and Cr through thermal treatment of mixtures of ZnO + Cr2O3 to form ZnCr2O4 and to confirm that Zn and Cr were incorporated simultaneously into the spinel structure. The incorporation efficiency for Zn was quantified, with the value ranging from 70.6 to 100% over the temperature range 700–1300°C. Leaching results further confirmed that ZnCr2O4 spinel was a superior product for Zn and Cr immobilization. Then, by artificially sintering Zn- and Cr-enriched soils, both Zn and Cr were immobilized effectively (with three orders of magnitude reduction in Zn leachability) in the ZnCr2O4 spinel as the predominant product phase. In addition, multiple heavy metals such as Zn, Cu, and Cr in the actual brownfield-site soils were well immobilized after sintering, which confirmed the potential for practical application of the thermal treatment technology utilized in this study.
Fei Wu and Yuanyuan Tang contributed equally to this work.
This paper was originally presented during the World Forum on Industrial Minerals, held in Qing Yang, China, October 2018
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.