1. Introduction
A classical theorem of John [Reference John2] shows that for any centrally symmetric convex set $K\subset \mathbb{R}^d$ , there exists an ellipsoid $E$ centred at the origin so that $E\subset K\subset \sqrt{d}E$ . This immediately implies that there exists a parallelotope $P$ so that $P\subset E\subset K\subset \sqrt{d}E\subset dP$ . In the discrete setting, quantitative covering results are of great interest in Additive Combinatorics, a prominent example being the Polynomial Freiman–Ruzsa Conjecture, which asks for effective bounds on covering sets of small doubling by convex progressions. In this context, a natural analogue of John’s theorem in $\mathbb{Z}^d$ would be covering centrally symmetric convex progressions by generalised arithmetic progressions. Here, a $d$ -dimensional convex progression is a set of the form $K\cap \mathbb{Z}^d$ , where $K\subset \mathbb{R}^d$ is convex and a $d$ -dimensional generalised arithmetic progression ( $d$ -GAP) is a translate of a set of the form $\left \{\sum _{i=1}^d m_ia_i\,:\, 1\leq m_i\leq n_i\right \}$ for some $n_i\in \mathbb{N}$ and $a_i\in \mathbb{Z}^d$ .
Tao and Vu [Reference Tao and Vu4, Reference Tao and Van5] obtained such a discrete version of John’s theorem, showing that for any origin-symmetric $d$ -dimensional convex progression $C\subset \mathbb{Z}^d$ there exists a $d$ -GAP $P$ so that $P\subset C\subset O(d)^{3d/2}\cdot P$ , where $m\cdot P\,:\!=\,\left \{\sum _{i=1}^m p_i\,:\, p_i\in P\right \}$ denotes the iterated sumset. Berg and Henk [Reference Berg and Henk1] improved this to $P\subset C\subset d^{O(\log (d))}\cdot P$ . Our focus will be on the covering aspect of these results, that is, minimising the ratio $\# P^{\prime}/ \# C$ , where $P^{\prime}$ is a $d$ -GAP covering $C$ . This ratio is bounded by $d^{O(d^2)}$ by Tao and Vu and by $d^{O(d\log d)}$ by Berg and Henk. We obtain the bound $d^{O(d)}$ , which is optimal.
Theorem 1.1. For any origin-symmetric convex progression $C\subset \mathbb{Z}^d$ , there exists a $d$ -GAP $P$ containing $C$ with $\# P\leq O(d)^{3d} \# C$ .
Corollary 1.2. For any origin-symmetric convex progression $C\subset \mathbb{Z}^d$ and linear map $\phi \,:\,\mathbb{R}^d\to \mathbb{R}$ , there exists a $d$ -GAP $P$ containing $C$ with $\# \phi (P)\leq O(d)^{3d} \# \phi (C)$ .
The optimality of Theorem 1.1 is demonstrated by the intersection of a ball $B$ with a lattice $L$ . Moreover, Lovett and Regev [Reference Lovett and Regev3] obtained a more emphatic negative result, disproving the GAP analogue of the Polynomial Freiman–Ruzsa Conjecture, by showing that by considering a random lattice $L$ one can find a convex $d$ -progression $C = B \cap L$ such that any $O(d)$ -GAP $P$ with $\# P \le \# C$ has $\# (P \cap C) \lt d^{-\Omega (d)} \# C$ . Our result can be viewed as the positive counterpart that settles this line of enquiry, showing that indeed $d^{\Theta (d)}$ is the optimal ratio for covering convex progressions by GAPs.
2. Proof
We start by recording two simple observations and a proposition on a particular basis of a lattice, known as the Mahler Lattice Basis.
Observation 2.1. Given an origin-symmetric convex set $K\subset \mathbb{R}^d$ , there exists a origin-symmetric parallelotope $Q$ and an origin-symmetric ellipsoid $E$ so that $\frac 1d Q\subset E\subset K\subset \sqrt{d}E\subset Q$ , so in particular $|Q|\leq d^{d}|K|$ .
This is a simple consequence of John’s theorem.
Observation 2.2. Let $X,X^{\prime}\in \mathbb{R}^{d\times d}$ be so that the rows of $X$ and $X^{\prime}$ generate the same lattice of full rank in $\mathbb{R}^d$ . Then $\exists T\in GL_n(\mathbb{Z})$ so that $TX=X^{\prime}$ .
This can be seen by considering the Smith Normal Form of the matrices $X$ and $X^{\prime}$ .
Proposition 2.3 (Corollary 3.35 from [Reference Tao and Vu4]). Given a lattice $\Lambda \subset \mathbb{R}^d$ of full rank, there exists a lattice basis $v_1,\dots, v_d$ of $\Lambda$ so that $\prod _{i=1}^{d} \|v_i\|_2 \leq O(d^{3d/2})\det\! (v_1,\dots, v_d)$ .
With these three results in mind, we prove the theorem.
Proof of Theorem 1.1. By passing to a subspace if necessary, we may assume that $C$ is full-dimensional. Write $C = K \cap \mathbb{Z}^d$ where $K\subset \mathbb{R}^d$ is origin-symmetric and convex. Use Observation 2.1 to find a parallelotope $Q\supset K$ so that $|Q|\leq d^d |K|$ . Let the defining vectors of $Q$ be $u_1,\dots,u_d$ , that is, $Q=\big\{\!\sum_i \lambda _i u_i\,:\, \lambda _i\in [{-}1,1]\big\}$ . Write $u_i^j$ for the $j$ -th coordinate of $u_i$ and write $U$ for the matrix $\big(u_i^j\big)$ with rows $u^j$ and columns $u_i$ .
Consider the lattice $\Lambda$ generated by the vectors $u^j$ (these are the vectors formed by the $j$ -th coordinates of the vectors $u_i$ ). Using Proposition 2.3 find a basis $v^1,\dots,v^d$ of $\Lambda$ so that $\prod _{j=1}^{d} ||v^j||_2\leq O\big(d^{3d/2}\big)\det\! \big(v^1,\dots, v^d\big)$ . Write $v^j_i$ for the $i$ -th coordinate of $v^j$ and write $V\,:\!=\,\big(v_i^j\big)$ . By Observation 2.2, we can find $T\in GL_n(\mathbb{Z})$ so that $TU=V$ , so that $T u_i = v_i$ for $1 \le i \le d$ and $T(\mathbb{Z}^d)=\mathbb{Z}^d$ .
Write $Q^{\prime}\,:\!=\,T(Q)=\big\{\!\sum_i \lambda _i v_i\,:\, \lambda _i\in [{-}1,1]\big\}$ and consider the smallest axis aligned box $B\,:\!=\,\prod_{i} [{-}a_i,a_i]$ containing $Q^{\prime}$ . Note that $a_j\leq \sum _{i} |v_i^j|=||v^{j}||_1\leq \sqrt{d}||v^{j}||_2$ . Hence, we find
Now we cover $C$ by a $d$ -GAP $P$ , constructed by the following sequence:
It remains to bound $\# P$ . As $C$ is full-dimensional each $a_i \ge 1$ , so
where the last inequality follows from Minkowski’s First Theorem (see for instance equation (3.14) in [Reference Tao and Vu4]).
Proof of Corollary 1.2. Let $m\,:\!=\,\max _{x\in \mathbb{Z}}\#(\phi ^{-1}(x)\cap C)$ and note that $\# \phi (C)\geq \# C/ m$ . Analogously, let $m^{\prime}\,:\!=\,\max _{x\in \mathbb{Z}}\#(\phi ^{-1}(x)\cap P)$ so that $m^{\prime}\geq m$ . By translation, we may assume that $m^{\prime}$ is achieved at $x=0$ . Note that for any $x = \phi (p)$ with $p \in P$ and $p^{\prime} \in P \cap \phi ^{-1}(0)$ we have $p+p^{\prime} \in P+P$ with $\phi (p+p^{\prime})=x$ , so $\#\big(\phi ^{-1}(x)\cap (P+P)\big)\geq m^{\prime}$ . We conclude that