Published online by Cambridge University Press: 01 January 2024
The total concentrations of rare-earth elements (REE) in the mined kaolin (0.02–0.06 wt.%), kaolin mine tailings (0.03–1.9 wt.%), and the kaolin-associated Marion Member sand lithology (0.03–4.6 wt.%) opened questions regarding the modes of occurrence of the REE and the role(s) of chemical weathering and secondary processes to explain the presence of REE in these materials. The REE were hosted primarily by phosphate minerals (monazite, xenotime) based on mineralogic analyses (scanning electron microscopy, X-ray diffraction). Enrichments in the light rare-earth elements (LREE: La–Gd) and the high correlation coefficient values were noted between P and the total REE concentrations (r2 = 0.99) for the sands and the mine tailings. Lower correlation coefficient values were noted between total REE concentrations and Zr (r2 = 0.31). The coarse fractions of the mined kaolins were enriched in the heavy rare-earth elements (HREE: Y, Tb–Lu) relative to the kaolin-associated sand lithologies. The REE inventory cannot be explained solely by mineral inheritance within the mined kaolins. Lower correlation coefficient values between P and total REE, positive Eu/Eu* anomalies, and the presence of xenotime overgrowths on zircon showed the importance of the role of chemical weathering of the detrital minerals during post-depositional processes (such as diagenesis) leading to redistributed and fractionated REE within the mined kaolin. The possibility of adsorption of the REE to kaolin mineral surfaces in the fine fraction of the mined kaolins remains open and permits further study to characterize fully the multi-modal fractionation of REE possible in the Georgia kaolin deposits.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.