Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T16:27:19.292Z Has data issue: false hasContentIssue false

Endemic Goitre in New Zealand, and its Relation to the Soil-iodine Studies from the University of Otago, New Zealand.

Published online by Cambridge University Press:  15 May 2009

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The incidence of goitre among school-children in New Zealand has been determined by the examinations made by one of us (Hercus) and by the officers of the School Medical Service, of over 80,000 children. The proportion of men of military age who were unfitted for active service on account of goitre was ascertained during the examination of over 135,000 recruits by the Military Medical Boards in the years 1916–1918. Additional information has also been derived from hospital records, by the number of operations for goitre.

The amount of iodine has been determined in nearly five hundred samples of soil, obtained from all parts of New Zealand, together with samples of a number of waters from mineral springs and town supplies.

In order to ascertain whether any relation exists between the amount of iodine in the soil of any district (considered as a soil of plant food, and therefore indirectly of human food), we have divided the Dominion into thirty-three districts, each homogeneous as far as possible in its geological and geographical circumstances, and have ascertained the average amount of iodine in soil and average incidence of goitre among school-children within each district, utilising certain defined methods of soil-analysis and diagnosis of goitre. It is proved that the following relation is approximately true throughout: viz, percentage incidence of goitre among school-children is equal to 6 plus the quotient of 360 divided by the amount of iodine in ten million parts of soil, so long as this does not exceed 50, assuming defined methods of medical examination and chemical analysis. When the soil is abnormally rich in iodine the constant 6 must be diminished. Further (though the records are here less complete), the relation between the average amount of iodine in the soil and the percentage of military recruits medically rejected on account of goitre is of the same general nature, the latter figure being about one-twentieth of the incidence among school-children, though this proportion must also be diminished in regions in which iodine is particularly abundant.

Approximately, therefore, the incidence of the disease is inversely proportional to the amount of iodine in the soil. Further, where, though the incidence of goitre is low, the amount of iodine in the soil is abnormally low, we have proved that it is present in the water supply in greater amounts than usual, and the daily intake of iodine among the inhabitants of such a district is thereby maintained. Further, regions in which the average amount of soiliodine is low are also those in which goitre is most frequently seen amongst the domestic animals.

Though there are certain points as yet unexplained, the whole body of facts is too large, and the relationship too consistent, to be fortuitous. We believe, therefore, that the hypothesis that goitre is caused by a deficiency of iodine in the diet has been fully sustained by the present investigation. Reasons have been deduced also for believing that a relation holds between the incidence of goitre and the distribution of geological formations (as determining the nature of the soil) in New Zealand, Switzerland, and perhaps in other countries.

Further, a study has been made of the prophylactic treatment of schoolchildren in New Zealand, by administering small amounts of iodine weekly. This has hitherto had fairly good results. We believe that the best method of prophylaxis, considered on physiological grounds, as well as those of efficiency and economy, would be daily ingestion of minute amounts of iodine, obtained by the utilisation for all culinary and table purposes of an iodised salt, in which 1 part of potassium iodide had been added to 200,000 of sodium chloride—the method which has been attended by such satisfactory results in Switzerland. This would afford the minimum amount of 0·005 mg. per day, which seems necessary for the functional requirements of the thyroid gland, while it would be far too small to have any ill-effects in the production of hyperthyroidism.

A consideration also has been given to the source of the iodine in soils and natural waters in the light of our own analyses and those of previous investigators, especially Dr Th. v. Fellenberg, whose work has been of the greatest assistance to us.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1925

References

Papers, the contents of which have been ascertained from other sources than the original work, are indicated by an asterisk.Google Scholar
Baumann, E. (1896). Ueber das normale Vorkommen von Jod im Thierkörper. Zeitschr. f. physiol. Chem. XXI. 319*.CrossRefGoogle Scholar
Bircher, E. (1908). Beihefte für Medizinische Klinik. IV. 158*.Google Scholar
Bircher, E. (1911). Zeitschr. f. experi. Pathol. u. Therapie. IX. 121*.Google Scholar
Bircher, H. (1883). Der endemischer Kropf und seine Beziehung zur Taubstummheit und zum Kretinismus, Basel*.Google Scholar
Cameron, A. T. (1914). The distribution of iodine in plant and animal tissues. Journ. of Biol. Chem. Part I. Vol. XVIII. 335380.CrossRefGoogle Scholar
Cameron, A. T. (1915). Journ. of Biol. Chem. Part II. Vol. XXIII 139.CrossRefGoogle Scholar
Cameron, A. T. and Carmichael, J. (1921). The effect of thyroxin on growth in white rats. (Proc. Phys. Soc. London.) Journ. Physiol. LV. 5.Google Scholar
Cratin, A. (1850). Existence de l'iode dans les plantes d'eau douce, conséquences de ce fait pour la géognosie, la physiologic, la thérapeutique, et peut-être pour l'industrie. Compt. Rend. Acad. Sci. XXX. 352–4.Google Scholar
Chatin, A. (1850). Recherches sur l'iode des eaux douces et de la présence de ce corps dans les plantes et animaux terrestres. Compt. Rend. Acad. Sci. XXXI. 280283.Google Scholar
Chatin, A. (1851). Présence de l'iode dans l'air, et absorption de corps dans l'acte de la respiration animale. Compt. Rend. Acad. Sci. XXXII. 669672.Google Scholar
Chatin, A. (1851). Recherche de l'iode dans l'air, les eaux, le sol et les produits alimentaires des Alpes de la France et du Piemont. Part I. Compt. Rend. Acad. Sci. XXXIII. 529531 and p. 584.Google Scholar
Chatin, A. (1852). Part II. Compt. Rend. Acad. Sci. XXXIV. 1418. Parts III. and IV. pp. 51–54.Google Scholar
Chatin, A. (1852). Recherches comparatives de l'iode et de quelques autres principes dans les eaux et les égouts qui alimentent Paris, Londres, et Turin. Compt. Rend. Acad. Sci. XXXV. 127130.Google Scholar
Chatin, A. (1853). Un fait dans la question du goître et du crétinisme. Compt. Rend. Acad. Sci. XXXVI. 652654.Google Scholar
Chatin, A. (1853). Presence de l'iode dans les eaux pluviales, les eaux courantes et les plantes des Antilles et des côtes de la Mediterranée. Compt. Rend. Acad. Sci. XXXVII. 723–4 and p. 934.Google Scholar
Chatin, A. (1854). Recherche de l'iode dans l'air, les eaux, le sol et les produits alimentaires du Jura, du Valais de la Lombardie, de 1'Allemagne, et de la Belgique. Compt. Rend. Acad. Sci. XXXVIII. 83–5.Google Scholar
Chatin, A. (1854). Note sur les recherches de l'iode de l'air par la rosée. Compt. Rend. Acad. Sci. XXXIX. 1083–5.Google Scholar
Chatin, A. (1858). De la diffusion geacute;nérale de l'iode, on de l'existcnce de ce corps dans l'air, dans les eaux, dans les minéraux et les corps organisés. Compt. Rend. Acad. Sci. XLVI. 399400.Google Scholar
Chatin, A. (1860). Sur l'iode de l'atmosphère. Compt. Rend. Acad. Sci. L. 420422.Google Scholar
Chatin, A. (1876). Des causes d'insuccès dans la recherche de minimimes quantités d'iode. Compt. Rend. Acad. Sci. LXXX. 128132.Google Scholar
Clark, T. and Pierce, C. C. (1914). Endemic goitre; its possible relation to water supply. U.S. Public Health Service, P. H. Reports, XXIX. No. 16, pp. 939948.CrossRefGoogle Scholar
CLAUDE, H. et Blanchetiere (1910). Sur la teneur en iode de la glande thyroïde dans ses rapports avec la constitution anatomiquc de l'organe. Journ. Phys. Path. gén. XII. 563*.Google Scholar
Dieterle, TH., Hirschfeld, L. and Klinger, R. (1913). München. med. Wochenschr. XXXIII.vi*.Google Scholar
Dieterle, TH., Hirschfeld, L. and Klinger, R. (1913). Epidemiologische Untersuchungen über den endemisehen Kropf. Arch. f. Hygiene, Abt. 2, Heft 2, VI*.Google Scholar
Dieterle, TH., Hirschfeld, L. and Klinger, R. (1915). Correspondenz-Blatt für Schweizer Aerzte, p. 794*Google Scholar
Dieterle, TH., Hirschfeld, L. and Klinger, R. (1916). Epidemiologische Untersuchungen über den endemischen Kropf. Arch. f. Hygiene, Abt. 2, p. 39*.Google Scholar
Don, A. (1893). The Genesis of Certain Auriferous Lodes. Trans. Amer. Inst. Mining Engineers, XXVII. 564668 (especially p. 598).Google Scholar
Drennan, A. M. (1924). Studies on Goitre in New Zealand. M.D. thesis (in MS.).Google Scholar
Dreschel, (1896). Zeitschr. f. Biol. XXXIII. 90*.Google Scholar
Eggenberger, H. (1924). L'iode aliment. Rev. Méd. de la Suisse Romande.Google Scholar
Farr, C. (1909). Radium emanation in Christehurch artesian water. Trans. New Zealand Inst. XLII. 185190.Google Scholar
Farr, C. (1910). Further experiments on the influence of Artesian Water on the hatching of trout. Trans. New Zealand Inst. XLIII. 5557.Google Scholar
Farrant, R. (1913). Proc. Roy. Soc. of Medicine. Section of Path. VI. Part III. pp. 2148.CrossRefGoogle Scholar
Farrant, R. (1914). Proc. Roy. Soc. of Medicine. VII. Part III. pp. 4968.CrossRefGoogle Scholar
Fellenberg, TH. V. (1923). Untersuchungen über das Vorkommen von Jod in der Natur. Biochem. Zeitschr. CXXXIX. 371451.Google Scholar
Fellenberg, TH. V. (1923). Untersuchungen über den Jodstoffwechsel. I. Biochem. Zeitschr. CXLII. 246262.Google Scholar
Fellenberg, TH. V. (1924). Biochem. Zeitschr.. II. Bestimmung kleinster Jodmengen. III. Jodbestimmungen in Lebensmitteln, Dungemitteln, schweizerischen Mineralwassern. IV. Über das Entweichen von elementarem Jod aus Meerwasser. V. Untersuchungen über den Jodgehalt der Luft. VI. Über den Zusammenhang zwischen der Häufigkeit des Auftretens von Kropf und dem Jodgehalt der Umwelt. VII. Über den Jodgehalt der Gesteine der geologischen Formationen und der Mineralien, und über den Bedingungen der Jodanreicherurig in Erden. VIII. Über das Freiwerden elementaren Jods aus Erde. (With H. Geilinger and K. Schweizer.) IX. Über Jodabspaltung und Jodspeicherung durch Microorganismen. (With H. Geilinger.) Biochem. Zeitschr. CLII. 116172.Google Scholar
Fellenberg, TH. V. (1925). Ueber den Kreislauf des Jodes. Schweiz. med. Wochenschr. LV. No. 3.Google Scholar
Fenger, F. (1915). On the Presence of Iodine in the Human Foetal thyroid gland. Journ. Biol. Chem. XX. 695.CrossRefGoogle Scholar
Furth, O. and Lieben, F. (1920). Biochem. Zeitschr. CIX. 124152*.Google Scholar
Gautier, A. (1899). Sur l'existenee d'azotures, argonures, arsenieures et iodures dans les roches cristallins. Comptes Rend. Aced. Sci. CXXXII. 935–;936.Google Scholar
Gaylord, , — and Marsh, , — (1914). Bull. U.S. Bureau Fisheries, No. 32*.Google Scholar
Goldschmidt, V. (1924). Geochemische Verteilungsgesetze der Elemente II. I. Math. Naturw. Kiasse, No. 4, pp. 537 (esp. p. 26). Videnskapssel kapets skrifter.Google Scholar
Gray, G. (1887). On the dissolved matter in rain water collected at Lincoln, Canterbury, N.Z. Aust. Assoc. Adv. of Sci. I. 138152.Google Scholar
Gray, G. (1910). Aust. Assoc. Adv. of Sci. Canterbury Agric. College Magazine, No. 24, pp. 112.Google Scholar
Harnack, , — and Hundeshagen, , — (1898). Zeitschr. f. physiol. Chem. XXIV. 412*.CrossRefGoogle Scholar
Hayden, H. H. (1915). Notes on the Geology of Chitral, Gilgit and of the Pamirs. Rec. Geri. Surv. India, XLV. 271335.Google Scholar
Hayhurst, E. R. (1922). The present day sources of common salt in relation to health. Journ. Amer. Med. Assoc. LXXVIII 1821.Google Scholar
Hercus, C. E. and Baker, E. S. (1921). Statistical study of the incidence of goitre amongst the school-children of Canterbury and the West Coast. New Zealand Med. Jaurn. XX. 116121.Google Scholar
Hercus, C. E. and Baker, E. S. (1923). Further considerations of endemic goitre; preventive work in Canterbury. New Zealand Med. Jaurn. XXII. 169173.Google Scholar
Hesse, E. (1913). Die Beziehung Zwischen Kropfendemie und Radioaktivität. Deutsches Arch. f. klin. Medizin. CX. 338358*.Google Scholar
Holker, J. (1923). The periodic opacity of certain colloids in progressively increasing concentration of electrolytes. Proc. Roy. Soc. A, CII. 710734.Google Scholar
Hotz, G. (14. x. 1922). Ueber endemische Kropfstrume, Kretinismus und ihre Prophylaxie (? Berlin). Klin. Wochenschr. p. 2074.Google Scholar
Hume, J. B. (22. xi. 1919). Enlargement of the thyroid gland in malaria. Brit. Med. Journ. II. 661.CrossRefGoogle Scholar
Huntington, E. (1922). Civilisation and Climate. (2nd Ed.) Yale Univ. Press.Google Scholar
Hunter, , — (1910). The determination of small quantities of iodine with special reference to the iodine-content of the thyroid gland. Journ. Biol. Chem. VII. 5.Google Scholar
Hunziker, H. (1915). Der Kropf. Bern.Google Scholar
Jackson, D. D. (1905). The normal distribution of chlorine in the natural waters of New York and New England. Water Supply and Irrigation Papers, No. 144, Geol. Surv. U.S.A.Google Scholar
Kendall, E. C. (1916). The active constituent of the thyroid, and its isolation, chemical nature and physiologic action. Collected papers of the Mayo Clinic, VIII. 513.Google Scholar
Kendall, E. C. (1919). Collected papers of the Mayo Clinic XI. 396; XI. 424488.Google Scholar
Kendall, E. C. (1919). The chemical identification of thyroxin. Journ. Biol. Chem. XL. 265.CrossRefGoogle Scholar
Klinger, R. (1919). Neue Vorsohläge zur Prophylaxie des endemischen Kropfes. Correspondenzbl. f. Schweizer Aerzte. XLIX. 575*.Google Scholar
Kocher, TH. (1889). Vorkorismen und Verteilung des Kropfes in Kanton Bern. Ein Beitrag zur Kenntnis der Ursachen der Kropfbildung, Bern. Also Arch. f. klin. Chirurgie, XXIX*.Google Scholar
Lebour, G. A. (1881). On the geological distribution of endemic goitre in England. Proc. North. Counties Branch Brit. Med. Assoc.Google Scholar
Lillie, R. (1907). The relation of ions to contractile processes. Journ. Biol. Chem. pp. 89141.Google Scholar
Marine, D. (1914). [Prevention and cure of goitre in brook trout.] Journ. Exper. Med. XIX. 376.CrossRefGoogle Scholar
Marine, D. and Kimball, O. P. (1917). The prevention of simple goitre in man. Journ. Lab, and Clin. Med. III. 4048.Google Scholar
Marine, D. and Lenhart, C. H. (1909). Further observations of the relation of iodine to the structure of the thyroid gland in the dog, pig and ox. Arch. Int. Med. III. 66.CrossRefGoogle Scholar
Marine, D. and Lenhart, C. H. (1909). Relation of iodine to the structure of human thyroids. Arch. Int. Med. IV. 440.CrossRefGoogle Scholar
Marine, D. and Lenhart, C. H. (1910). Observations and experiments on the so-called thyroid carcinomata of brook trout, and its relation to ordinary goitre. Journ. Exper. Med. XII. 311.CrossRefGoogle Scholar
Marine, D. and Lenhart, C. H. (1911). Further observations and experiments on the so-called thyroid carcinomata of brook trout. Journ. Exper. Med. XIII. 455.CrossRefGoogle Scholar
Marine, D. and Lenhart, C. H. (1922). The present status of the functions of the thyroid gland. Phys. Reviews, II. 521551.Google Scholar
Marine, D. and Lenhart, C. H. and Rogoff, J. M. (1916). The absorption of potassium iodide by the thyroid gland in vivo following its intravenous injection in constant amounts. Journ. Pharm. Exper. Therap. VIIIL. 439.Google Scholar
Mellanby, , — (1921). (Abstract.) Journ. Physiol. LV. vii.Google Scholar
Messerli, F. M. (1913). Thèse de doctorat, Lausanne (and various other papers, 1913–1921)*.Google Scholar
Marine, D. and Lenhart, C. H. (1922). Schweizerische Kropfkommission, Sitzung 21/1/1922. Beilage zum Bull. des eidg. Gesundheitsamtes, No. 18, pp. 719*.Google Scholar
McCarrison, R. (1906). Further observations on endemic goitre. Lancet, I. 1110; II. 1570.CrossRefGoogle Scholar
McCarrison, R. (1913). The etiology of endemic goitre. Lancet, I. pp. 147219.Google Scholar
McCarrison, R. (1924). A British Medical Association lecture on goitre. B. M. J. p. 989.CrossRefGoogle ScholarPubMed
McClendon, J. F. (1923). The determination of iodine in iodine metabolism. Proc. Soc. Exper. Biol. and Med. XX. 351ndash;352.Google Scholar
McClendon, J. F. (1924). The determination of iodine in food, drink and excreta. Journ. Biol. Chem. LX. 289299.CrossRefGoogle Scholar
McClendon, J. F. and Hathaway, J. C. (1924). The inverse ratio between iodine in food and drink and goitre, simple and exophthalmic. Journ. Amer. Med. Assoc. LXXXII. 16681672.CrossRefGoogle Scholar
McMahon, C. A. (1899). Notes on the Geology of Gilgit. Quart. Journ. Geol. Soc. LVI. 337368.Google Scholar
Notter, and Frith, (1908). The Theory and Practice of Hygiene, p. 415.Google Scholar
Olesen, R. (1923). Public Health Reports, U.S. Public Health Service.Google Scholar
Oswald, A. (1901). Zur Kenntnis des Thyroglobulins. Zeitschr.f. physiol. Chem. XXXII. 121*.CrossRefGoogle Scholar
Plummer, H. S. (1921). Inter-relationship of function of the thyroid gland and of its active agent, thyroxin, in the tissues of the body. Journ. Amer. Med. Assoc. LXXVII. 243247.Google Scholar
DeQiervain, F. (31. viii. 1922). Schilddrüse und Iod mit Rücksicht auf die Kropf prophylaxis. Schweiz. med. Wochenschr. p. 857*.Google Scholar
Saint Lager, De (1867). Études sur les causes du crétinisme et du goitre endemique. 8vo. Paris*.Google Scholar
Schittenhelm, H. and Weichardt, W. (1912). Der endemische Kropf. Berlin*.Google Scholar
Seidell, A. and Fenger, F. (1913). Seasonal variation in the iodine-content of the thyroid gland. Journ. Biol. Chem. XIII. 517.CrossRefGoogle Scholar
Sherman, (1923). Chemistry of Food and Nutrition.Google Scholar
Skey, W. (1877). On some mineral waters in New Zealand. Trans. New Zealand Institute, X. 223242.Google Scholar
Sloan, (1921). Ohio State Med. Journ. XVII. 172*.Google Scholar
Stiner, O. (1924). Die Verbreitung des endemischen Kropfes in der Schweiz nach neueren Ergebnissen der Rekruten-Untersuchungen. Schweizer Kropf Kommission. Beilage zum Bull. des Eidy. Gesundheitsamtes, No. 6, pp. 2337.Google Scholar
Swiss Goitre Commission (1923). Instruction pour la mensuration du corps thyroid. Commission de Goitre. Suppl. Bull. de Service Fédéral de l'Hygiène publique, No. 5, pp. 4346, and figures 1–14.Google Scholar
Taylor, T. G. (1916). The Control of Settlement by Humidity and Temperature. (Australian) Commonwealth Bur. of Meteorol. Bull. 14, pp. 2324.Google Scholar
Watson, , Chalmers, (1912). The influence of diet on the thyroid gland. Quart. Journ. Exper. Physiol. V. 229.CrossRefGoogle Scholar
Wheeler, H. L. and Jameson, G. S. (1905). Journ. Amer. Chem. Soc. XXXIII. 365*.Google Scholar
Winkler, L. W. (19151916). Zeitschr. f. angew. Chem. XXVIII. 447; XXIX. 68, 205*.Google Scholar
Wohlmann, A. S. (1914). Mineral Waters and Spas of New Zealand. Govt. Printer, Wellington.Google Scholar

An addendum has been issued for this article: