No CrossRef data available.
Published online by Cambridge University Press: 17 May 2024
This paper is inspired by a class of infinite order differential operators arising in quantum mechanics. They turned out to be an important tool in the investigation of evolution of superoscillations with respect to quantum fields equations. Infinite order differential operators act naturally on spaces of holomorphic functions or on hyperfunctions. Recently, infinite order differential operators have been considered and characterized on the spaces of entire monogenic functions, i.e. functions that are in the kernel of the Dirac operators. The focus of this paper is the characterization of infinite order differential operators that act continuously on a different class of hyperholomorphic functions, called slice hyperholomorphic functions with values in a Clifford algebra or also slice monogenic functions. This function theory has a very reach associated spectral theory and both the function theory and the operator theory in this setting are subjected to intensive investigations. Here we introduce the concept of proximate order and establish some fundamental properties of entire slice monogenic functions that are crucial for the characterization of infinite order differential operators acting on entire slice monogenic functions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.