Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T07:07:51.447Z Has data issue: false hasContentIssue false

DIGITAL RECONSTRUCTION OF SOFT-TISSUE STRUCTURES IN FOSSILS

Published online by Cambridge University Press:  27 April 2017

Stephan Lautenschlager*
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgebaston Birmingham, B15 2TT, UK 〈s.lautenschlager@bham.ac.uk〉
Get access

Abstract

In the last two decades, advances in computational imaging techniques and digital visualization have created novel avenues for the study of fossil organisms. As a result, paleontology has undergone a shift from the pure study of physically preserved bones and teeth, and other hard tissues, to using virtual computer models to study specimens in greater detail, restore incomplete specimens, and perform biomechanical analyses. The rapidly increasing application of these techniques has further paved the way for the digital reconstruction of soft-tissue structures, which are rarely preserved or otherwise available in the fossil record. In this contribution, different types of digital soft-tissue reconstructions are introduced and reviewed. Provided examples include methodological approaches for the reconstruction of musculature, endocranial components (e.g., brain, inner ear, and neurovascular structures), and other soft tissues (e.g., whole-body and life reconstructions). Digital techniques provide versatile tools for the reconstruction of soft tissues, but given the nature of fossil specimens, some limitations and uncertainties remain. Nevertheless, digital reconstructions can provide new information, in particular if interpreted in a phylogenetically grounded framework. Combined with other digital analytical techniques (e.g., finite element analysis [FEA], multibody dynamics analysis [MDA], and computational fluid dynamics [CFD]), soft-tissue reconstructions can be used to elucidate the paleobiology of extinct organisms and to test competing evolutionary hypotheses.

Type
Research Article
Copyright
Copyright © 2017, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, R.L., Laurini, C.R., and Richter, M., 2012, A palaeobiologist’s guide to ‘virtual’micro-CT preparation: Palaeontologia Electronica, v. 15, no. 2, art. 6T, 17 p., http://palaeo-electronica.org/content/issue-2-2012-technical-articles/233-micro-ct-workflow.Google Scholar
Adams, L.A., 1918, A memoir on the phylogeny of the jaw muscles in recent and fossil vertebrates: Annals of the New York Academy of Sciences, v. 28, no. 1, p. 51166.Google Scholar
Allen, V., Bates, K.T., Li, Z., and Hutchinson, J.R., 2013, Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs: Nature, v. 497, p. 104107.CrossRefGoogle ScholarPubMed
Allison, P.A., and Briggs, D.E.G., 1993, Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic: Geology, v. 21, p. 527530.Google Scholar
Balanoff, A.M., Bever, G., Colbert, M.W., Clarke, J.A., Field, D.J., Gignac, P.M., Ksepka, D.T., Ridgely, R.C., Smith, N.A., Torres, C.R., Walsh, S., and Witmer, L.M., 2016, Best practices for digitally constructing endocranial casts: Examples from birds and their dinosaurian relatives: Journal of Anatomy, v. 229, p. 173190, DOI: 10.1111/joa.12378.Google Scholar
Balanoff, A.M., Bever, G.S., Rowe, T.B., and Norell, M.A., 2013, Evolutionary origins of the avian brain: Nature, v. 501, p. 9396.Google Scholar
Barghusen, H.R., 1973, The adductor jaw musculature of Dimetrodon (Reptilia, Pelycosauria): Journal of Paleontology, v. 47, p. 823834.Google Scholar
Barsbold, R., and Perle, A., 1980, Segnosauria, a new suborder of carnivorous dinosaurs: Acta Palaeontologica Polonica, v. 25, p. 185195.Google Scholar
Bates, K.T., and Falkingham, P.L., 2012, Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics: Biology Letters, v. 8, p. 660664, DOI: 10.1098/rsbl.2012.0056.Google Scholar
Bates, K.T., Falkingham, P.L., Macaulay, S., Brassey, C., and Maidment, S.C.R., 2015, Downsizing a giant: Re-evaluating Dreadnoughtus body mass: Biology Letters, v. 11, art. 20150215, DOI: 10.1098/rsbl.2015.0215.Google Scholar
Bates, K.T., Manning, P.L., Hodgetts, D., and Sellers, W.I., 2009, Estimating mass properties of dinosaurs using laser imaging and 3D computer modeling: PLoS One, v. 4, no. 2, art. e4532, DOI: 10.1371/journal.pone.0004532.Google Scholar
Béchard, I., Arsenault, F., Cloutier, R., and Kerr, J., 2014, The Devonian placoderm fish Bothriolepis canadensis revisited with three-dimensional digital imagery: Palaeontologia Electronica, v. 17, no. 1, art. 2A, 19 p., http://palaeo-electronica.org/content/2014/647-3d-bothriolepis.Google Scholar
Bernard, S., Benzerara, K., Beyssac, O., Menguy, N., Guyot, F., Brown, G.E. Jr., and Goffé, B., 2007, Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks: Earth and Planetary Science Letters, v. 262, p. 257272.CrossRefGoogle Scholar
Blanco, R.E., Rinderknecht, A., and Lecuona, G., 2012, The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae): Lethaia, v. 45, p. 157163.Google Scholar
Bourke, J.M., Ruger Porter, W.M., Ridgely, R.C., Lyson, T.R., Schachner, E.R., Bell, P.R., and Witmer, L.M., 2015, Breathing life into dinosaurs: Tackling challenges of soft-tissue restoration and nasal airflow in extinct species: The Anatomical Record, v. 297, p. 21482186.Google Scholar
Brassey, C.A., and Gardiner, J.D., 2015, An advanced shape-fitting algorithm applied to quadrupedal mammals: Improving volumetric mass estimates: Royal Society Open Science, v. 2, no. 8, art. 150302, DOI: 10.1098/rsos.150302.Google Scholar
Brassey, C.A., Maidment, S.C.R., and Barrett, P.M., 2015, Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): Comparing volumetric and linear bivariate mass estimation methods: Biology Letters, v. 11, no. 3, art. 20140984, DOI: 10.1098/rsbl.2014.0984.Google Scholar
Brassey, C.A., O’Mahoney, T.G., Kitchener, A.C., Manning, P.L., and Sellers, W.I., 2016, Convex-hull mass estimates of the dodo (Raphus cucullatus): Application of a CT-based mass estimation technique: PeerJ, v. 4, art. e1432, DOI: 10.7717.peerj.1432.Google Scholar
Bright, J.A., 2014, A review of paleontological finite element models and their validity: Journal of Paleontology, v. 88, p. 760769.Google Scholar
Brochu, C.A., 2000, A digitally-rendered endocast for Tyrannosaurus rex : Journal of Vertebrate Paleontology, v. 20, p. 16.CrossRefGoogle Scholar
Brown, D.S., 1981, The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauria: Bulletin of the British Museum of Natural History, Geology, v. 35, p. 253347.Google Scholar
Bryant, H.N., and Russell, A.P., 1992, The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa: Philosophical Transactions of the Royal Society of London B, Biological Sciences, v. 337, p. 405418.Google Scholar
Bryant, H.N., and Seymour, K.L., 1990, Observations and comments on the reliability of muscle reconstruction in fossil vertebrates: Journal of Morphology, v. 206, p. 109117.Google Scholar
Buchholtz, E.A., and Seyfarth, E.-A., 1999, The gospel of the fossil brain: Tilly Edinger and the science of paleoneurology: Brain Research Bulletin, v. 48, p. 351361.CrossRefGoogle ScholarPubMed
Buchholtz, E.A., and Seyfarth, E.-A., 2001, The study of ‘fossil brains’: Tilly Edinger (1897–1967) and the beginnings of paleoneurology: BioScience, v. 51, p. 674682.Google Scholar
Budd, G.E., 1998, Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle: Lethaia, v. 31, p. 197210.Google Scholar
Butterfield, N.J., 2003, Exceptional fossil preservation and the Cambrian explosion: Integrative and Comparative Biology, v. 43, p. 166177.Google Scholar
Button, D.J., Rayfield, E.J., and Barrett, P.M., 2014, Cranial biomechanics underpins high sauropod diversity in resource-poor environments: Proceedings of the Royal Society of London B, Biological Sciences, v. 281, art. 20142114, DOI: 10.1098/rspb.2014.2114.Google ScholarPubMed
Carabajal, A.P., Sterli, J., Müller, J., and Hilger, A., 2013, Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae): PLoS One, v. 8, no. 7, art. e69264, DOI: 10.1371/journal.pone.0069264.Google Scholar
Chapman, T., Moiseev, F., Sholukha, V., Louryan, S., Rooze, M., Semal, P., and Jan, S.V.S., 2010, Virtual reconstruction of the Neandertal lower limbs with an estimation of hamstring muscle moment arms: Comptes Rendus Palevol, v. 9, p. 445454.CrossRefGoogle Scholar
Cherin, M., Iurino, D. A., Sardella, R., and Rook, L., 2014, Acinonyx pardinensis (Carnivora, Felidae) from the early Pleistocene of Pantalla (Italy): Predatory behavior and ecological role of the giant Plio-Pleistocene cheetah: Quaternary Science Reviews, v. 87, p. 8297.Google Scholar
Cherin, M., Iurino, D.A., Willemsen, G., and Carnevale, G., 2016, A new otter from the early Pleistocene of Pantalla (Italy), with remarks on the evolutionary history of Mediterranean Quaternary Lutrinae (Carnivora, Mustelidae): Quaternary Science Reviews, v. 135, p. 92102.Google Scholar
Cuff, A.R., and Rayfield, E. J., 2015, Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania: PeerJ, v. 3, art. e1093, DOI: 10.7717/peerj.1093.CrossRefGoogle ScholarPubMed
Cunningham, J.A., Rahman, I.A., S. Lautenschlager, S., Rayfield, E.J., and Donoghue, P.C.J., 2014, A virtual world of paleontology: Trends in Ecology & Evolution, v. 29, p. 347357.Google Scholar
Curtis, N., 2011, Craniofacial biomechanics: An overview of recent multibody modelling studies: Journal of Anatomy, v. 218, p. 1625.Google Scholar
Curtis, N., Kupczik, K., O’Higgins, P., Moazen, M., and Fagan, M., 2008, Predicting skull loading: Applying multibody dynamics analysis to a macaque skull: The Anatomical Record, v. 291, p. 491501.Google Scholar
Dilkes, D.W., 1999, Appendicular myology of the hadrosaurian dinosaur Maiasaura peeblesorum from the Late Cretaceous (Campanian) of Montana: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 90, p. 87125.Google Scholar
Dilkes, D.W., Hutchinson, J.R., Holliday, C.M., and Witmer, L.M., 2012, Reconstructing the musculature of dinosaurs, in Brett-Surman, M.K., Holtz, T.R., and Farlow, J.O., eds., The Complete Dinosaur: Bloomington, Indiana, Indiana University Press, p. 151190.Google Scholar
Dumont, E., Grosse, I.R., and Slater, G. J., 2009, Requirements for comparing the performance of finite element models of biological structures: Journal of Theoretical Biology, v. 256, p. 96103.Google Scholar
Edinger, T., 1929, Die fossilen Gehirne: Ergebnisse der Anatomie und Entwicklungsgeschichte, v. 28, p. 1249.Google Scholar
Foffa, D., Cuff, A.R., Sassoon, J., Rayfield, E.J., Mavrogordato, M.N., and Benton, M.J., 2014, Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK: Journal of Anatomy, v. 225, p. 209219.Google Scholar
Frey, E., Martill, D.M., and Buchy, M.-C., 2003, A new species of tapejarid pterosaur with soft-tissue head crest: Geological Society of London Special Publications, v. 217, p. 6572.Google Scholar
Gai, Z., Donoghue, P.C., Zhu, M., Janvier, P., and Stampanoni, M., 2011, Fossil jawless fish from China foreshadows early jawed vertebrate anatomy: Nature, v. 476, p. 324327.Google Scholar
Garwood, R., and Dunlop, J., 2014, The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids: Journal of Paleontology, v. 88, p. 735746.Google Scholar
Gerrienne, P., Dilcher, D.L., Bergamaschi, S., Milagres, I., Pereira, E., and Rodrigues, M.A.C., 2006, An exceptional specimen of the early land plant Cooksonia paranensis, and a hypothesis on the life cycle of the earliest eutracheophytes: Review of Palaeobotany and Palynology, v. 142, p. 123130.Google Scholar
Gignac, P.M., Kley, N., Clarke, J.A., Colbert, M.W., Morhardt, A.C., Cerio, D., Cost, I.N., Cox, P.G., Daza, J.D., and Early, C.M., 2016, Diffusible iodine-based contrast-enhanced computed tomography (diceCT): An emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues: Journal of Anatomy, v. 228, no. 6, p. 889909, DOI: 10.1111/joa.12449.Google Scholar
Giles, S., and Friedman, M., 2014, Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii): Journal of Paleontology, v. 88, p. 636651.Google Scholar
Gold, M.E.L., Brusatte, S.L., and Norell, M.A., 2013, The cranial pneumatic sinuses of the tyrannosaurid Alioramus (Dinosauria: Theropoda) and the evolution of cranial pneumaticity in theropod dinosaurs: American Museum Novitates, v. 3790, p. 146.Google Scholar
Grosse, I.R., Dumont, E.R., Coletta, C., and Tolleson, A., 2007, Techniques for modelling muscle‐induced forces in finite element models of skeletal structures: The Anatomical Record, v. 290, p. 10691088.Google Scholar
Gunga, H.-C., Suthau, T., Bellmann, A., Friedrich, A., Schwanebeck, T., Stoinski, S., Trippel, T., Kirsch, K., and Hellwich, O., 2007, Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods: Naturwissenschaften, v. 94, p. 623630.Google Scholar
Gunz, P., 2015, Computed tools for paleoneurology, in Bruner, E., ed., Human Paleoneurology: Springer Series in Bio-/Neuroinformatics, v. 3, p. 3955.Google Scholar
Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G.W., and Bookstein, F.L., 2009, Principles for the virtual reconstruction of hominin crania: Journal of Human Evolution, v. 57, p. 4862.Google Scholar
Hieronymus, T.L., Witmer, L.M., Tanke, D.H., and Currie, P.J., 2009, The facial integument of centrosaurine ceratopsids: Morphological and histological correlates of novel skin structures: The Anatomical Record, v. 292, p. 13701396.Google Scholar
Holliday, C.M., 2009, New insights into dinosaur jaw muscle anatomy: The Anatomical Record, v. 292, p. 12461265.Google Scholar
Holloway, W.L., Claeson, K.M., and O’Keefe, F.R., 2013, A virtual phytosaur endocast and its implications for sensory system evolution in archosaurs: Journal of Vertebrate Paleontology, v. 33, p. 848857.Google Scholar
Hopson, J., 1979, Paleoneurology, in Gans, C., ed., Biology of the Reptilia, Volume 9: London, Academic Press, p. 39146.Google Scholar
Hurlburt, G.R., Ridgely, R.C., and Witmer, L.M., 2013, Relative size of brain and cerebrum in tyrannosaurid dinosaurs: An analysis using brain-endocast quantitative relationships in extant alligators, in Parrish, J.M., Molnar, R.E., Currie, P.J., and Koppelhus E.B., eds., Tyrannosaurid Paleobiology: Bloomington, Indiana, Indiana University Press, p. 121.Google Scholar
Hutchinson, J.R., Anderson, F.C., Blemker, S.S., and Delp, S.L., 2005, Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: Implications for stance, gait, and speed: Paleobiology, v. 31, p. 676701.Google Scholar
Hutchinson, J.R., Ng-Thow-Hing, V., and Anderson, F.C., 2007, A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex : Journal of Theoretical Biology, v. 246, p. 660680.Google Scholar
Jerison, H., 1973, Evolution of the Brain and Intelligence: New York, Academic Press, 482 p.Google Scholar
Ksepka, D.T., Balanoff, A.M., Walsh, S., Revan, A., and Ho, A., 2012, Evolution of the brain and sensory organs in Sphenisciformes: New data from the stem penguin Paraptenodytes antarcticus : Zoological Journal of the Linnean Society, v. 166, p. 202219.Google Scholar
Kundrát, M., and Janáček, J., 2007, Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia: Naturwissenschaften, v. 94, p. 769778.Google Scholar
Lautenschlager, S., 2012, Paleontology 2.0—A comprehensive protocol for the reconstruction of hard- and soft tissue structures in fossils: Geological Society of America Abstracts with Programs, v. 44, no. 7, p. 372.Google Scholar
Lautenschlager, S., 2013, Cranial myology and bite force performance of Erlikosaurus andrewsi: A novel approach for digital muscle reconstructions: Journal of Anatomy, v. 222, p. 260272.Google Scholar
Lautenschlager, S., 2015, Estimating cranial musculoskeletal constraints in theropod dinosaurs: Royal Society Open Science, v. 2, art. 150495, DOI: 10.1098/rsos.150495.Google Scholar
Lautenschlager, S., Bright, J.A., and Rayfield, E. J., 2014a, Digital dissection–Using contrast‐enhanced computed tomography scanning to elucidate hard‐and soft‐tissue anatomy in the common buzzard Buteo buteo : Journal of Anatomy, v. 224, p. 412431.CrossRefGoogle Scholar
Lautenschlager, S., and Hübner, T., 2013, Ontogenetic trajectories in the ornithischian endocranium: Journal of Evolutionary Biology, v. 26, p. 20442050.Google Scholar
Lautenschlager, S., Rayfield, E.J., Altangerel, P., Zanno, L.E., and Witmer, L.M., 2012, The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function: PLoS ONE, v. 7, no. 12, art. e52289, DOI: 10.1371/journal.pone.0052289.Google Scholar
Lautenschlager, S., Witmer, L.M., Altangerel, P., and Rayfield, E.J., 2013, Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs: Proceedings of the National Academy of Sciences of the United States of America, v. 110, p. 2065720662, DOI:10.1073/pnas.1310711110.Google Scholar
Lautenschlager, S., Witmer, L.M., Altangerel, P., Zanno, L.E., and Rayfield, E.J., 2014b, Cranial anatomy of Erlikosaurus andrewsi (Dinosauria, Therizinosauria): New insights based on digital reconstruction: Journal of Vertebrate Paleontology, v. 34, p. 12631291.Google Scholar
Liu, J., Shi, J., Fitton, L.C., Phillips, R., O’Higgins, P., and Fagan, M.J., 2012, The application of muscle wrapping to voxel-based finite element models of skeletal structures: Biomechanics and Modeling in Mechanobiology, v. 11, p. 3547.Google Scholar
Liu, S., Smith, A.S., Gu, Y., Tan, J., Liu, C.K., and Turk, G., 2015, Computer simulations imply forelimb-dominated underwater flight in plesiosaurs: PLoS Computational Biology, v. 11, no. 12, art. e1004605, DOI: 10.1371/journal.pcbi.1004605.Google Scholar
Lukeneder, A., 2012, Computed 3D visualisation of an extinct cephalopod using computer tomographs: Computers & Geosciences, v. 45, p. 6874.Google Scholar
Maidment, S.C., Henderson, D.M., and Barrett, P.M., 2014, What drove reversions to quadrupedality in ornithischian dinosaurs? Testing hypotheses using centre of mass modelling: Naturwissenschaften, v. 101, p. 9891001.Google Scholar
Mallison, H., 2010, The digital Plateosaurus I: Body mass, mass distribution, and posture assessed using CAD and CAE on a digitally mounted complete skeleton: Palaeontologia Electronica, v. 13, no. 2, art. 8A, 26 p., http://palaeo-electronica.org/2010_2/198/index.html.Google Scholar
Mallison, H., and Wings, O., 2014, Photogrammetry in paleontology—Aa practical guide: Journal of Paleontological Techniques, v. 12, p. 131.Google Scholar
Marek, R.D., Moon, B.C., Williams, M., and Benton, M.J., 2015, The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions: Palaeontology, v. 58, p. 723742.Google Scholar
Marsh, O.C., 1885, The gigantic mammals of the order Dinocerata, in Fifth Annual Report, United States Geological Survey: Washington, DC, US Government Printing Office, p. 34–302.Google Scholar
Mazzetta, G.V., Cisilino, A.P., Blanco, R.E., and Calvo, N., 2009, Cranial mechanics and functional interpretation of the horned carnivorous dinosaur Carnotaurus sastrei : Journal of Vertebrate Paleontology, v. 29, p. 822830.Google Scholar
McGowan, C., 1979, The hind limb musculature of the brown kiwi, Apteryx australis mantelli : Journal of Morphology, v. 160, p. 3373.Google Scholar
McGowan, C., 1982, The wing musculature of the brown kiwi Apteryx australis mantelli and its bearings on ratite affinities: Journal of Zoology, v. 197, p. 173219.Google Scholar
Metscher, B.D., 2009, MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues: BMC Physiology, v. 9, p. 114.Google Scholar
Miner, R.W., 1925, The pectoral limb of Eryops and other primitive tetrapods: Bulletin of the American Museum of Natural History, v. 51, p. 19241925.Google Scholar
Moazen, M., Curtis, N., Evans, S.E., O’Higgins, P., and Fagan, M.J., 2008, Rigid-body analysis of a lizard skull: Modelling the skull of Uromastyx hardwickii : Journal of Biomechanics, v. 41, p. 12741280.Google Scholar
Morhardt, A.C., Ridgley, R.C., and Witmer, L.M., 2012, From endocast to brain: Assessing brain size and structure in extinct archosaurs using gross anatomical brain region approximation (GABRA): Journal of Vertebrate Paleontology, v. 32, supplement, p. 145.Google Scholar
Nicholls, E.L., and Russell, A.P., 1985, Structure and function of the pectoral girdle and forelimb of Struthiomimus altus (Theropoda: Ornithomimidae): Palaeontology, v. 28, p. 643677.Google Scholar
Nyakatura, J.A., Allen, V.R., Lauströer, J., Andikfar, A., Danczak, M., Ullrich, H.-J., Hufenbach, W., Martens, T., and Fischer, M.S., 2015, A three-dimensional skeletal reconstruction of the stem amniote Orobates pabsti (Diadectidae): Analyses of body mass, centre of mass position, and joint mobility: PLoS One, v. 10, no. 9, art. e0137284, DOI: 10.1371/journal.pone.0137284.Google Scholar
O’Connor, P.M., 2006, Postcranial pneumaticity: An evaluation of soft‐tissue influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in archosaurs: Journal of Morphology, v. 267, p. 11991226.CrossRefGoogle ScholarPubMed
Organ, C.L., 2006, Thoracic epaxial muscles in living archosaurs and ornithopod dinosaurs: The Anatomical Record, Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, v. 288A, p. 782793.Google Scholar
Organ, C.L., and Adams, J., 2005, The histology of ossified tendon in dinosaurs: Journal of Vertebrate Paleontology, v. 25, p. 602613.Google Scholar
Osborn, H.F., 1905, Tyrannosaurus and other Cretaceous carnivorous dinosaurs: Bulletin of the American Museum of Natural History, v. 21, no. 14, p. 259265.Google Scholar
Ősi, A., and Makádi, L., 2009, New remains of Hungarosaurus tormai (Ankylosauria, Dinosauria) from the Upper Cretaceous of Hungary: Skeletal reconstruction and body mass estimation: Paläontologische Zeitschrift, v. 83, p. 227245.CrossRefGoogle Scholar
Persons, W.S. IV, and Currie, P.J., 2011a, Dinosaur speed demon: The caudal musculature of Carnotaurus sastrei and implications for the evolution of South American abelisaurids: PLoS One, v. 6, no. 10, art. e25763, DOI: 10.1371/journal.pone.0025763.Google Scholar
Persons, W.S. IV, and Currie, P.J., 2011b, The tail of Tyrannosaurus: Reassessing the size and locomotive importance of the m. caudofemoralis in non‐avian theropods: The Anatomical Record, v. 294, no. 1, p. 119131.Google Scholar
Persons, W.S. IV, Currie, P.J., and Norell, M.A., 2013, Oviraptorosaur tail forms and functions: Acta Palaeontologica Polonica, v. 59, p. 553567.Google Scholar
Racicot, R.A., and Rowe, T., 2014, Endocranial anatomy of a new fossil porpoise (Odontoceti, Phocoenidae) from the Pliocene San Diego Formation of California: Journal of Paleontology, v. 88, p. 652663.Google Scholar
Rahman, I.A., and Lautenschlager, S., 2017, Applications of three-dimensional box modeling to paleontological functional analysis: The Paleontological Society Papers, v. 22, p. 119–132.Google Scholar
Rahman, I.A., Zamora, S., Falkingham, P.L., and Phillips., J.C., 2015, Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome: Proceedings of the Royal Society of London B, Biological Sciences, v. 282, no. 1818, art. 20151964, DOI: 10.1098/rspb.2015.1964.Google Scholar
Rayfield, E.J., 2007, Finite Element Analysis and understanding the biomechanics and evolution of living and fossil organisms: Annual Review of Earth and Planetary Sciences, v. 35, p. 541576.Google Scholar
Rayfield, E.J., Norman, D.B., Horner, C.C., Horner, J. R., Smith, P.M., Thomason, J.J., and Upchurch, P., 2001, Cranial design and function in a large theropod dinosaur: Nature, v. 409, p. 10331037.Google Scholar
Romer, A.S., 1923, The pelvic musculature of saurischian dinosaurs: Bulletin of the American Museum of Natural History, v. 49, p. 605617.Google Scholar
Rowe, T.B., Macrini, T.E., and Luo, Z.-X., 2011, Fossil evidence on origin of the mammalian brain: Science, v. 332, p. 955957.Google Scholar
Ruf, I., Volpato, V., Rose, K.D., Billet, G., De Muizon, C., and Lehmann, T., 2016, Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility: Paläontologische Zeitschrift, v. 90, p. 153171.Google Scholar
Sasso, C.D., and Signore, M., 1998, Exceptional soft-tissue preservation in a theropod dinosaur from Italy: Nature, v. 392, p. 383387.Google Scholar
Schopf, J.M., 1975, Modes of fossil preservation: Review of Palaeobotany and Palynology, v. 20, p. 2753.Google Scholar
Schweitzer, M.H., 2011, Soft tissue preservation in terrestrial Mesozoic vertebrates: Annual Review of Earth and Planetary Sciences, v. 39, p. 187216.Google Scholar
Sellers, W., Hepworth-Bell, J., Falkingham, P., Bates, K., Brassey, C., Egerton, V., and Manning, P., 2012, Minimum convex hull mass estimations of complete mounted skeletons: Biology Letters, v. 8, art. 20120263, DOI: 10.1098/rsbl.2012.0263.CrossRefGoogle ScholarPubMed
Sellers, W.I., Margetts, L., Coria, R.A., and Manning, P.L., 2013, March of the titans: The locomotor capabilities of sauropod dinosaurs: PLoS One, v. 8, no. 10, art. e78733, DOI: 10.1371/journal.pone.0078733.Google Scholar
Senck, S., Bookstein, F.L., Benazzi, S., Kastner, J., and Weber, G.W., 2015, Virtual reconstruction of modern and fossil hominoid crania: Consequences of reference sample choice: The Anatomical Record, v. 298, p. 827841.Google Scholar
Sharp, A.C., 2014, Three dimensional digital reconstruction of the jaw adductor musculature of the extinct marsupial giant Diprotodon optatum : PeerJ, v. 2, art. e514, DOI: 10.7717/peerj.514.Google Scholar
Sharp, A.C., and Trusler, P.W., 2015, Morphology of the jaw-closing musculature in the common wombat (Vombatus ursinus) using digital dissection and magnetic resonance imaging: PLoS One, v. 10, no. 2, art. e0117730, DOI: 10.1371/journal.pone.0117730.Google Scholar
Snively, E., Cotton, J.R., Ridgely, R., and Witmer, L.M., 2013, Multibody dynamics model of head and neck function in Allosaurus (Dinosauria, Theropoda): Palaeontologia Electronica, v. 16, no. 2, art. 11A, http://palaeo-electronica.org/content/2013/389-allosaurus-feeding.Google Scholar
Soons, J., Herrel, A., Aerts, P., and Dirckx, J., 2012, Determination and validation of the elastic moduli of small and complex biological samples: Bone and keratin in bird beaks: Journal of the Royal Society Interface, v. 9, p. 13811388.Google Scholar
Steyer, J.S., Boulay, M., and Lorrain, S., 2010, 3D external restorations of stegocephalian skulls using ZBrush: The renaissance of fossil amphibians: Comptes Rendus Palevol, v. 9, p. 463470.Google Scholar
Sumida, S.S., 1989, The appendicular skeleton of the early Permian genus Labidosaurus (Reptilia, Captorhinomorpha, Captorhinidae) and the hind limb musculature of captorhinid reptiles: Journal of Vertebrate Paleontology, v. 9, p. 295313.Google Scholar
Sutton, M., Rahman, I., and Garwood, R., 2014, Techniques for Virtual Palaeontology: Oxford, UK, John Wiley & Sons, 208 p.Google Scholar
Sutton, M.D., 2008, Tomographic techniques for the study of exceptionally preserved fossils: Proceedings of the Royal Society of London B, Biological Sciences, v. 275, p. 15871593.Google Scholar
Sutton, M.D., Briggs, D.E.G., Siveter, David J., and Siveter, Derek J., 2005, Silurian brachiopods with soft-tissue preservation: Nature, v. 436, p. 10131015.Google Scholar
Sutton, M.D., Garwood, R.J., Siveter, David J., and Siveter, Derek J., 2012, SPIERS and VAXML: A software toolkit for tomographic visualisation and a format for virtual specimen interchange: Palaeontologia Electronica, v. 15, no. 2, art. 5T, http://palaeo-electronica.org/content/issue-2-2012-technical-articles/226-virtual-palaeontology-toolkit.Google Scholar
Tahara, R., and Larsson, H.C., 2011, Cranial pneumatic anatomy of Ornithomimus edmontonicus (Ornithomimidae: Theropoda): Journal of Vertebrate Paleontology, v. 31, p. 127143.Google Scholar
Trinajstic, K., Marshall, C., Long, J., and Bifield, K., 2007, Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications: Biology Letters, v. 3, p. 197200.Google Scholar
Vinther, J., 2015, A guide to the field of palaeo colour: BioEssays, v. 37, p. 643656.Google Scholar
von Baczko, M.B., and Desojo, J.B., 2016, Cranial anatomy and palaeoneurology of the archosaur Riojasuchus tenuisceps from the Los Colorados Formation, La Rioja, Argentina: PLoS One, v. 11, no. 2, art. e0148575, DOI: 10.1371/journal.pone.0148575.Google Scholar
Walsh, S.A., Barrett, P.M., Milner, A.C., Manley, G., and Witmer, L.M., 2009, Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds: Proceedings of the Royal Society of London B, Biological Sciences, v. 276, p. 13551360.Google Scholar
Walsh, S.A., Iwaniuk, A.N., Knoll, M.A., Bourdon, E., Barrett, P.M., Milner, A.C., Nudds, R.L., Abel, R.L., and Sterpaio, P.D., 2013a, Avian cerebellar floccular fossa size is not a proxy for flying ability in birds: PLoS One, v. 8, no. 6, art. e67176, DOI: 10.1371/journal.pone.0067176.Google Scholar
Walsh, S.A., Luo, Z.-X., and Barrett, P.M., 2013b, Modern imaging techniques as a window to prehistoric auditory worlds, in Koppl, C., Manley, G.A., Popper, A.N., and Fay, R.R., eds., Insights from Comparative Hearing Research: Springer Handbook of Auditory Research, v. 49, New York, Springer-Verlag, p. 227261.Google Scholar
Wilby, P.R., and Briggs, D.E.G., 1997, Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues: Geobios, v. 30, p. 493502.Google Scholar
Witmer, L.M., 1995, The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils, in Thomason, J.J., ed., Functional Morphology in Vertebrate Paleontology: Cambridge, UK, Cambridge University Press, p. 1933.Google Scholar
Witmer, L.M., 1997, The evolution of the antorbital cavity of archosaurs: A study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity: Journal of Vertebrate Paleontology, v. 17, p. 176.Google Scholar
Witmer, L.M., 2001, Nostril position in dinosaurs and other vertebrates and its significance for nasal function: Science, v. 293, p. 850853.Google Scholar
Witmer, L.M., Chatterjee, S., Franzosa, J., and Rowe, T., 2003, Neuroanatomy of flying reptiles and implications for flight, posture and behaviour: Nature, v. 425, p. 950953.Google Scholar
Witmer, L.M., and Ridgely, R.C., 2008, The paranasal air sinuses of predatory and armored dinosaurs (Archosauria: Theropoda and Ankylosauria) and their contribution to cephalic structure: The Anatomical Record, v. 291, p. 13621388.Google Scholar
Witmer, L.M., and Ridgely, R.C., 2009, New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior: The Anatomical Record, v, 292, p. 12661296.Google Scholar
Witmer, L.M., Ridgely, R.C., Dufeau, D.L., and Semones, M.C., 2008, Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs, in Endo, H., and Frey, R., eds., Anatomical Imaging: Tokyo, Springer Verlag, p. 6787.Google Scholar
Wroe, S., Chamoli, U., Parr, W.C.H., Clausen, P., Ridgely, R., and Witmer, L., 2013, Comparative biomechanical modeling of metatherian and placental saber-tooths: A different kind of bite for an extreme pouched predator: PLoS One, v. 8, no. 6, art. e66888, DOI: 10.1371/journal.pone.0066888.Google Scholar
Zelenitsky, D.K., Therrien, F., Ridgely, R.C., McGee, A.R., and Witmer, L.M., 2011, Evolution of olfaction in non-avian theropod dinosaurs and birds: Proceedings of the Royal Society of London B, Biological Sciences, v. 278, p. 36253634.Google Scholar
Zollikofer, C.P., De León, M.S.P., Lieberman, D.E., Guy, F., Pilbeam, D., Likius, A., Mackaye, H.T., Vignaud, P., and Brunet, M., 2005, Virtual cranial reconstruction of Sahelanthropus tchadensis : Nature, v. 434, p. 755759.Google Scholar
Zollikofer, C.P.E., Ponce De León, M.S., Schmitz, R.W., and Stringer, C.B., 2008, New insights into mid-late Pleistocene fossil hominin paranasal sinus morphology: The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, v. 291, p. 15061516.Google Scholar