Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T12:29:57.840Z Has data issue: false hasContentIssue false

Time-lapse recording of yearly activity of the sea star Odontaster validus and the sea urchin Sterechinus neumayeri in Tethys Bay (Ross Sea, Antarctica)

Published online by Cambridge University Press:  15 March 2023

Andrea Peirano*
Affiliation:
ENEA - Marine Environment Research Centre, Via S.Teresa S/N, 19032, Pozzuolo di Lerici, La Spezia, Italy
Andrea Bordone
Affiliation:
ENEA - Marine Environment Research Centre, Via S.Teresa S/N, 19032, Pozzuolo di Lerici, La Spezia, Italy
Lorenzo P. Corgnati
Affiliation:
CNR - National Research Council of Italy, Institute of Marine Sciences, Via S.Teresa S/N, 19032, Pozzuolo di Lerici, La Spezia, Italy
Simone Marini
Affiliation:
CNR - National Research Council of Italy, Institute of Marine Sciences, Via S.Teresa S/N, 19032, Pozzuolo di Lerici, La Spezia, Italy

Abstract

One-year time-lapse images acquired via an autonomous photo imaging device positioned at a depth of 20 m in Tethys Bay (Ross Sea, Antarctica) on a rocky bottom colonized by the sponge Mycale (Oxymycale) acerata were analysed. Monthly changes in the abundance and activity of the sea star Odontaster validus and sea urchin Sterechinus neumayeri on the sponge and nearby rocky bottom were compared with respect to environmental variables such as pack-ice presence/absence, temperature, salinity and photosynthetically active radiation. Sea urchins were more abundant on the rocky bottom and sponge during the summer and winter, respectively. Sea stars showed a decrease in the number of individuals on the sponge from January to December. The grazing activity of both species reached its maximum in January–April, when increased sunlight contributed to the phytoplankton bloom. The winter months were critical both for O. validus and S. neumayeri; although the red sea star maintained its pattern of activity on the rocky bottoms in terms of searching for food, the sea urchin reduced its activity. Time-lapse monitoring systems coupled with physicochemical sensors showed potential for revealing species behaviour in polar environments, contributing to the elucidation of future changes in coastal communities facing climate change.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, H., Ahn, I.-Y., Park, J., Song, S.J., Noh, J , Kim, H. & Khim, J.S. 2021. Shift in polar benthic community structure in a fast retreating glacial area of Marian Cove, West Antarctica. Scientific Reports, 11, 10.1038/s41598-020-80636-z.CrossRefGoogle Scholar
Bell, J.J. 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79, 341353.CrossRefGoogle Scholar
Brey, T., Pearse, J., Basch, L., McClintock, J. & Slattery, M. 1995. Growth and production of Sterechinus neumayeri (Echinoidea Echinodermata) in McMurdo Sound, Antarctica. Marine Biology, 124, 279292.10.1007/BF00347132CrossRefGoogle Scholar
Byun, D.-S. & Hart, D.E. 2020. Predicting tidal heights for extreme environments: from 25 h observations to accurate predictions at Jang Bogo Antarctic Research Station, Ross Sea, Antarctica. Ocean Science, 16, 10.5194/os-16-1111-2020.CrossRefGoogle Scholar
Cantone, G., Castelli, A. & Gambi, M.C. 2000. Benthic polychaetes off Terra Nova Bay and Ross Sea: species composition, biogeography, and ecological role. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology - Italiantartide expeditions (1987–1995). Berlin: Springer-Verlag, 550–561.Google Scholar
Caputi, S.S., Careddu, G., Calizza, E., Fiorentino, F., Maccapan, D., Rossi, L. & Costantini, M.L. 2020. Seasonal food web dynamics in the Antarctic benthos of Tethys Bay (Ross Sea): implications for biodiversity persistence under different seasonal sea-ice coverage. Frontiers in Marine Science, 7, 10.3389/fmars.2020.594454.CrossRefGoogle Scholar
Cattaneo-Vietti, R., Chiantore, M., Gambi, M.C., Albertelli, G., Cormaci, M. & Di Geronimo, I. 2000a. Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology - Italiantartide expeditions (1987–1995). Berlin: Springer-Verlag, 503–514.Google Scholar
Cerrano, C., Bavestrello, G., Calcinai, B., Cattaneo-Vietti, R. & Sarà, A. 2000. Asteroids eating sponges from Tethys Bay, East Antarctica. Antarctic Science, 12, 425426.CrossRefGoogle Scholar
Corgnati, L., Marini, S., Mazzei, L., Ottaviani, E., Aliani, S., Conversi, A. & Griffa, A. 2016. Looking inside the ocean: toward an autonomous imaging system for monitoring gelatinous zooplankton. Sensors, 16, 10.3390/s16122124.CrossRefGoogle ScholarPubMed
Cummings, V.J., Hewitt, J.E., Thrush, S.F., Marriott, P.M., Halliday, N.H. & Norkko, A. 2018. Linking Ross Sea coastal benthic communities to environmental conditions: documenting baselines in a spatially variable and changing world. Frontiers in Marine Science, 5, 10.3389/fmars.2018.00232.CrossRefGoogle Scholar
Cummings, V.J., Thrush, S., Norkko, A., Andrew, N., Hewitt, J., Funnel, G. & Schwarz, A.-M. 2006. Accounting for local scale variability in benthos: implications for future assessments of latitudinal trends in the coastal Ross Sea. Antarctic Science, 18, 10.1017/S0954102006000666.CrossRefGoogle Scholar
Dayton, P.K. 1989. Interdecadal variations in an Antarctic sponge and its predators from oceanographic climate shift. Science, 245, 14841486.CrossRefGoogle Scholar
Dayton, P.K. & Oliver, J.S. 1978. Long-term experimental benthic studies in McMurdo Sound. Antarctic Journal of the US, 13, 136137.Google Scholar
Dayton, P.K., Robilliard, G.A. & DeVries, A.L. 1969. Anchor ice formation in McMurdo Sound, Antarctica, andiIts biological effects. Science, New Series, 163, 273274.Google ScholarPubMed
Dayton, P.K., Robilliard, G.A., Paine, R.T. & Dayton, L.B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44, 10.2307/1942321.CrossRefGoogle Scholar
Dayton, P.K., Jarrell, S.C., Kim, S., Parnell, P.E., Thrush, S.F., Hammerstrom, K. & Leichter, J.J. 2019. Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications, 29, 120.CrossRefGoogle Scholar
Gambi, M.C., Lorenti, M., Russo, G.F. & Scipione, M.B. 1994. Benthic associations of the shallow hard bottoms off Terra Nova Bay, Ross Sea: zonation, biomass and population structure. Antarctic Science, 6, 449462.10.1017/S0954102094000696CrossRefGoogle Scholar
Gutt, J. 2002. On the direct impact of ice on marine benthic communities, a review. Polar Biology, 24, 1O.1007/s003000100262.Google Scholar
Hedley, C. 1911. Mollusca. In Murray, J. ed., British Antarctic expedition 1907–9, under the command of Sir E. H. Shackleton, c.v.o, Reports on the scientific investigations, Vol. 2: Biology. London: W. Heinemann, 18.Google Scholar
Innamorati, G., Mori, L., Massi, M., Lazzara, L., & Nuccio, C. 2000. Phytoplankton biomass related to environmental factors in the Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology - Italiantartide expeditions (1987–1995). Berlin: Springer-Verlag, 217230.CrossRefGoogle Scholar
Kim, S.L., Thurber, A., Hammerstrom, K. & Conlan, K. 2007. Seastar response to organic enrichment in an oligotrophic polar habitat. Journal of Experimental Marine Biology and Ecology, 346, 10.1016/j.jembe.2007.03.004.CrossRefGoogle Scholar
Lazzara, L., Nardello, I., Ermanni, C., Mangoni, O., & Saggiomo, V. 2007. Light environment and seasonal dynamics of microalgae in the annual sea ice at Terra Nova Bay, Ross Sea, Antarctica. Antarctic Science, 19, 10.1017/s0954102007000119.CrossRefGoogle Scholar
Lenzano, M.G., Lannutti, E., Toth, C.K., Lenzano, L.E. & Lovecchio, A. 2014. Assessment of ice-dam collapse by time-lapse photos at the Perito Moreno Glacier, Argentina. International Archives of the Photogrammetry Remote Sensing and Spatial Information Science, 40, 10.5194/isprsarchives-XL-1-211-2014.Google Scholar
Lombardi, C., Kuklinski, P., Bordone, A., Spirandelli, E. & Raiteri, G. 2021. Resolution monitoring in an Antarctic shallow coastal site (Terra Nova Bay, Ross Sea). Minerals, 11, 10.3390/min11040374.CrossRefGoogle Scholar
Mangoni, O., Saggiomo, M., Modigh, M., Catalano, G., Zingone, A. & Saggiomo, V. 2008. The role of platelet ice microalgae in seeding phytoplankton blooms in Terra Nova Bay (Ross Sea, Antarctica): a mesocosm experiment. Polar Biology, 32, 10.1007/s00300-008-0507-z.Google Scholar
Marini, S., Bonofiglio, F., Corgnati, L.P., Bordone, A., Schiaparelli, S. & Peirano, A., 2022. Long-term automated visual monitoring of Antarctic benthic fauna. Methods in Ecology and Evolution, 13, 10.1111/2041-210X.13898.CrossRefGoogle Scholar
McClintock, J.B., Tackett, B. & Bowser, S. 2010. Video observations on non-swimming valve claps in the Antarctic scallop Adamussium colbecki. Antarctic Science, 22, 173174.CrossRefGoogle Scholar
Medrzycka, D., Benn, D.I., Box, J.E., Copland, L. & Balog, J. 2016. Calving behavior at Rink Isbræ, west Greenland, from time-lapse photos. Arctic, Antarctic, and Alpine Research, 48, 10.1657/AAAR0015-059.CrossRefGoogle Scholar
Nuccio, C., Innamorati, M., Lazzara, L., Mori, G. & Massi, L. 2000. Spatial and temporal distribution of phytoplankton assemblages in the Ross Sea. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology - Italiantartide expeditions (1987–1995). Berlin: Springer-Verlag, 231245.CrossRefGoogle Scholar
Odate, T., Hirawake, T. & Fukuchi, M. 2004. Empirical relationship between sea ice thickness and underwater light intensity based on observations near Syowa Station, Antarctica, in austral summer. Nankyoku Shiry^o (Antarctic Record), 2, 9197.Google Scholar
Peirano, A., Bordone, A., Marini, S., Piazza, P. & Schiaparelli, S. 2016. A simple time-lapse apparatus for monitoring macrozoobenthos activity in Antarctica. Antarctic Science, 28, 10.1017/S0954102016000377CrossRefGoogle Scholar
Piazza, P., Cummings, V., Guzzi, A., Hawes, I., Lohrer, A., Marini, S., et al. 2019. Underwater photogrammetry in Antarctica: long-term observations in benthic ecosystems and legacy data rescue. Polar Biology, 42, 10.1007/s00300-019-02480-w.CrossRefGoogle Scholar
Piazza, P., Cummings, V., Lohrer, D., Marini, S., Marriott, P., Menna, F., et al. 2018. Divers-operated underwater photogrammetry: applications in the study of Antarctic benthos. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 10.5194/isprs-archives-XLII-2-885-2018.Google Scholar
Schories, D, Díaz, M.J., Garrido, I., Heran, T., Holtheuer, J., Kappes, J.L., et al. 2019. Analysis of time-lapse images as a tool to study movement in situ in four species of sea urchins and one limpet from North Patagonia and the South Shetland Islands. Rostocker Meeresbiologische Beiträge, 30, 117136.Google Scholar
Schwarz, A.M., Hawes, I., Andrew, N., Norkko, A., Cummings, V. & Thrush, S. 2003. Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biology, 26, 10.1007/s00300-003-0556-2.CrossRefGoogle Scholar
Slattery, M., Clintock, J.B. & Bowser, S.S. 1997. Deposit feeding: a novel mode of nutrition in the Antarctic colonial soft coral Gersemia antarctica. Marine Ecology Progress Series, 149, 10.3354/meps149299.CrossRefGoogle Scholar
Thrush, S.F. & Cummings, V.J. 2011. Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Marine Ecology, 32, 10.1111/j.1439-0485.2011.00462.x.CrossRefGoogle Scholar
Thrush, S., Dayton, P., Cattaneo-Vietti, R., Chiantore, M.C., Cummings, V., Andrew, N., et al. 2006. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep-Sea Research II, 53, 10.1016/j.dsr2.2006.02.006.Google Scholar
Vacchi, M., La Mesa, M. & Greco, S. 2000. The coastal fish fauna of Terra Nova Bay, Ross Sea, Antarctica. In Faranda, F.M., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology - Italiantartide expeditions (1987–1995). Berlin: Springer-Verlag, 456468.Google Scholar
Williams, R., 1988. The inshore marine fishes of the Vestfold Hills region, Antarctica. Hydrobiologia, 165, 161167.CrossRefGoogle Scholar
Yuxin, M.A., Zhang, F., Yang, H., Lin, L. & He, J. 2014. Detection of phytoplankton blooms in Antarctic coastal water with an online mooring system during summer 2010/11. Antarctic Science, 26, 10.1017/S0954102013000400.Google Scholar
Zwerschke, N., Morley, S.A., Peck, S.L. & Barnes, D.K.A. 2021. Can Antarctica's shallow zoobenthos ‘bounce back’ from iceberg scouring impacts driven by climate change? Global Change Biology, 27, 10.1111/gcb.15617.CrossRefGoogle ScholarPubMed