Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Hamacher, Paul
2015.
The Dimension of Affine Deligne–Lusztig Varieties in the Affine Grassmannian.
International Mathematics Research Notices,
p.
rnv081.
Hamacher, Paul
2015.
The geometry of Newton strata in the reduction modulo p of Shimura varieties of PEL type.
Duke Mathematical Journal,
Vol. 164,
Issue. 15,
Yang, Zhongwei
2016.
Class polynomials for some affine Hecke algebras.
Journal of Algebra,
Vol. 452,
Issue. ,
p.
502.
Zhu, Xinwen
2017.
Affine Grassmannians and the geometric Satake in mixed characteristic.
Annals of Mathematics,
Vol. 185,
Issue. 2,
Howard, Benjamin
and
Pappas, Georgios
2017.
Rapoport–Zink spaces for spinor groups.
Compositio Mathematica,
Vol. 153,
Issue. 5,
p.
1050.
Chen, Miaofen
and
Viehmann, Eva
2017.
Affine Deligne-Lusztig varieties and the action of 𝐽.
Journal of Algebraic Geometry,
Vol. 27,
Issue. 2,
p.
273.
KIM, WANSU
2018.
RAPOPORT–ZINK SPACES OF HODGE TYPE.
Forum of Mathematics, Sigma,
Vol. 6,
Issue. ,
KIM, WANSU
2018.
RAPOPORT–ZINK UNIFORMIZATION OF HODGE-TYPE SHIMURA VARIETIES.
Forum of Mathematics, Sigma,
Vol. 6,
Issue. ,
Hamacher, Paul
and
Viehmann, Eva
2018.
Irreducible components of minuscule affine Deligne–Lusztig varieties.
Algebra & Number Theory,
Vol. 12,
Issue. 7,
p.
1611.
Chen, Ling
and
Nie, Sian
2019.
Connected components of closed affine Deligne–Lusztig varieties.
Mathematische Annalen,
Vol. 375,
Issue. 3-4,
p.
1355.
Görtz, Ulrich
He, Xuhua
and
Nie, Sian
2019.
Fully Hodge–Newton Decomposable Shimura Varieties.
Peking Mathematical Journal,
Vol. 2,
Issue. 2,
p.
99.
Shen, Xu
2020.
On Some Generalized Rapoport–Zink Spaces.
Canadian Journal of Mathematics,
Vol. 72,
Issue. 5,
p.
1111.
Chen, Ling
and
Nie, Sian
2020.
Connected components of closed affine Deligne-Lusztig varieties for Res/GL.
Journal of Algebra,
Vol. 546,
Issue. ,
p.
1.
Zhou, Rong
2020.
Mod p isogeny classes on Shimura varieties with parahoric level structure.
Duke Mathematical Journal,
Vol. 169,
Issue. 15,
He, Xuhua
and
Zhou, Rong
2020.
On the connected components of affine Deligne–Lusztig varieties.
Duke Mathematical Journal,
Vol. 169,
Issue. 14,
Shankar, Ananth N.
and
Zhou, Rong
2021.
Serre–Tate theory for Shimura varieties of Hodge type.
Mathematische Zeitschrift,
Vol. 297,
Issue. 3-4,
p.
1249.
Chen, Miaofen
and
Nie, Sian
2022.
Connectedness of Kisin varieties associated to absolutely irreducible Galois representations.
Journal für die reine und angewandte Mathematik (Crelles Journal),
Vol. 2022,
Issue. 785,
p.
31.
Kisin, Mark
Madapusi Pera, Keerthi
and
Shin, Sug Woo
2022.
Honda–Tate theory for Shimura varieties.
Duke Mathematical Journal,
Vol. 171,
Issue. 7,
Nie, Sian
2023.
Connected components of affine Deligne–Lusztig varieties for unramified groups.
Compositio Mathematica,
Vol. 159,
Issue. 10,
p.
2051.