Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T05:08:45.735Z Has data issue: false hasContentIssue false

Laser and Particle Beams in 2010

Published online by Cambridge University Press:  14 April 2010

Rights & Permissions [Opens in a new window]

Abstract

Type
Editorial from the Editor in Chief
Copyright
Copyright © Cambridge University Press 2010

With the first issue of 2010, the editor in chief wants to take the opportunity to thank authors of Laser and Particle Beams for choosing this journal to publish their significant research results. In addition, I want to thank our readers and subscribers that they regard Laser and Particle Beams as a first rate source of information on new scientific developments in the field of basic physics issues regarding intense laser and particle beams, pulse power technology associated with beam generation, and related applied science topics. The subjects we covered last year included the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology (Adonin et al., Reference Adonin, Turtikov, Ulrich, Jacoby, Hoffmann and Wieser2009; Andreev et al., Reference Andreev, Platonov and Kawata2009; Chen et al., Reference Chen, Unick, Vafaei-Najafabadi, Tsui, Fedosejevs, Naseri, Masson-Laborde and Rozmus2008; Fazio et al., Reference Fazio, Neri, Ossi, Santo and Trusso2009; Hong et al., Reference Hong, He, Wen, Du, Teng, Qing, Huang, Huang, Liu, Wang, Huang, Zhu, Ding and Peng2009; Imasaki & Li, Reference Imasaki and Li2009; Kasperczuk et al., Reference Kasperczuk, Pisarczyk, Kalal, Martinkova, Ullschmied, Krousky, Masek, Pfeifer, Rohlena, Skala and Pisarczyk2008; Kovalchuk et al., Reference Kovalchuk, Kharlov, Zherlitsyn, Kumpjak, Tsoy, Vizir and Smorudov2009; Laska et al., Reference Laska, Krasa, Velyhan, Jungwirth, Krousky, Margarone, Pfeifer, Rohlena, Ryc, Skala, Torrisi and Ullschmied2009; Li et al., Reference Li, Liu, Cheng, Chang, Wan and Wen2009; Popov et al., Reference Popov, Yu, Rozmus, Kovalev and Sydora2009; Tahir et al., Reference Tahir, Spiller, Shutov, Lomonosov, Piriz, Redmer, Hoffmann, Fortov, Deutsch and Bock2009; Yu et al., Reference Yu, Chen and Pukhov2009). We are happy to see that the number of submissions is steadily rising. Thus, we published 85 research papers including one review article on certain aspects of laser fusion (Hora, Reference Hora2009), and one letter (Hasi et al., Reference Hasi, Lu, Fu, Lu, Gong, Lin and He2009).

Laser and Particle Beams is following the development of inertial fusion. Significant improvements have been made especially in the field of target design and performance (Cook et al., Reference Cook, Kozioziemski, Nikroo, Wilkens, Bhandarkar, Forsman, Haan, Hoppe, Huang, Mapoles, Moody, Sater, Seugling, Stephens, Takagi and Xu2008; Izgorodin et al., Reference Izgorodin, Abzaev, Balyaev, Bessarab, Cherkesova, Chulkov, Fenoshin, Garanin, Gogolev, Golubinsky, Ignat'ev, Irinichev, Lachtikov, Morovov, Nazarov, Nikolaev, Pepelyaev, Pinegin, Rojz, Romaev, Solomatina, Vasin and Veselov2009; Koresheva et al., Reference Koresheva, Aleksandrova, Koshelev, Nikitenko, Timasheva, Tolokonnikov, Belolipetskiy, Kapralov, Sergeev, Blazevic, Weyrich, Varentsov, Tahir, Udrea and Hoffmann2009; Moreau et al., Reference Moreau, Levassort, Blondel, De Nonancourt, Croix, Thibonnet and Balland-Longeau2009).

The scientific community is looking toward Livermore to watch the National Ignition Facility (NIF) start the ignition campaign and we all hope for successful experiments to show that ignition of a fusion pellet is possible on a laboratory scale. When this important goal is achieved, the community has to search for a driver that is efficient on a level of 20–30%. Here advanced laser systems may play a role, but also pulse power generators and ion accelerators. There are a number of lasers and pulsed power machines dedicated to inertial fusion research. However, the situation is quite different in the accelerator field. Here basic physics issues of high energy physics are driving accelerator technology (Hora & Hoffmann, Reference Hora and Hoffmann2008), aspects of applied science are only slowly entering considerations for new accelerators.

Accelerator technology with application to fusion energy is under development at LBNL Berkeley, ITEP Moscow, and GSI Darmstadt (Barnard et al., Reference Barnard, Ahle, Bieniosek, Celata, Davidson, Henestroza, Friedman, Kwan, Logan, Lee, Lund, Meier, Sabbi, Seidl, Sharp, Shuman, Waldron, Qin and Yu2003; Hoffmann et al., Reference Hoffmann, Blazevic, Ni, Rosmej, Roth, Tahir, Tauschwitz, Udrea, Varentsov, Weyrich and Maron2005; Sharkov, Reference Sharkov2007). Although none of the existing accelerators will be able to ignite a fusion pellet, every effort is made to improve this situation. We will see the 30th Heavy Ion Fusion Symposium this year in September followed by the European Conference on Laser Interaction with Matter. Our journal will closely follow these conferences and we expect results from these meetings published in our journal.

References

REFERENCES

Adonin, A., Turtikov, V., Ulrich, A., Jacoby, J., Hoffmann, D.H.H. & Wieser, J. (2009). Intense heavy ion beams as a pumping source for short wavelength lasers. Laser Particle Beams 27, 379391.Google Scholar
Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Particle Beams 27, 449457.CrossRefGoogle Scholar
Barnard, J.J., Ahle, L.E., Bieniosek, F.M., Celata, C.M., Davidson, R.C., Henestroza, E., Friedman, A., Kwan, J.W., Logan, B.G., Lee, E.P., Lund, S.M., Meier, W.R., Sabbi, G.L., Seidl, P.A., Sharp, W.M., Shuman, D.B., Waldron, W.L., Qin, H. & Yu, S.S. (2003). Integrated experiments for heavy ion fusion. Laser Particle Beams 21, 553560.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008), Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Particle Beams 26, 147155.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Particle Beams 26, 479487.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: A plume dynamics analysis. Laser Particle Beams 27, 281–190.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009). Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension. Laser Particle Beams 27, 533536.CrossRefGoogle Scholar
Hoffmann, D., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K., Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Particle Beams 23, 4753.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Particle Beams 27, 1926.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Particle Beams 27, 207222.Google Scholar
Hora, H. & Hoffmann, D.H.H. (2008). Using petawatt laser pulses of picosecond duration for detailed diagnostics of creation and decay processes of B-mesons in the LHC. Laser Particle Beams 26, 503505.Google Scholar
Imasaki, K. & Li, D. (2009). Feasibility of new laser fusion by intense laser field. Laser Particle Beams 27, 273279.Google Scholar
Izgorodin, V.M., Abzaev, F.M., Balyaev, A.P., Bessarab, A.V., Cherkesova, I.N., Chulkov, V.U., Fenoshin, D.Y., Garanin, S.G., Gogolev, V.G., Golubinsky, A.G., Ignat'ev, Y.V., Irinichev, D.A., Lachtikov, A.E., Morovov, A.P., Nazarov, V.V., Nikolaev, G.P., Pepelyaev, A.P., Pinegin, A.V., Rojz, I.M., Romaev, V.N., Solomatina, E.Y., Vasin, M.G. & Veselov, A.V. (2009). Target technology development for the research of high energy density physics and inertial fusion at the RFNC-VNIIEF. Laser Particle Beams 27, 657680.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Particle Beams 26, 189196.CrossRefGoogle Scholar
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Particle Beams 27, 255272.CrossRefGoogle Scholar
Kovalchuk, B.M., Kharlov, A.V., Zherlitsyn, A.A., Kumpjak, E.V., Tsoy, N.V., Vizir, V.A. & Smorudov, G.V. (2009). 40 GW Linear Transformer Driver stage for pulse generators of Mega-ampere range. Laser Particle Beams 27, 371378.CrossRefGoogle Scholar
Laska, L., Krasa, J., Velyhan, A., Jungwirth, K., Krousky, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L. & Ullschmied, J. (2009). Experimental studies of generation of similar to 100 MeV Au-ions from the laser-produced plasma. Laser Particle Beams 27, 137147.CrossRefGoogle Scholar
Li, L.M., Liu, L., Cheng, G.X., Chang, L., Wan, H. & Wen, J.C. (2009). Electrical explosion process and amorphous structure of carbon fibers under high-density current pulse igniting intense electron-beam accelerator. Laser Particle Beams 27, 511520.CrossRefGoogle Scholar
Moreau, L., Levassort, C., Blondel, B., De Nonancourt, C., Croix, C., Thibonnet, J. & Balland-Longeau, A. (2009). Recent advances in development of materials for laser target. Laser Particle Beams 27, 537544.CrossRefGoogle Scholar
Popov, K.I., Yu, V., Rozmus, W., Kovalev, V.F. & Sydora, R.D. (2009). Mono-energetic ions from collisionless expansion of spherical multi-species clusters. Laser Particle Beams 27, 321326.CrossRefGoogle Scholar
Sharkov, B.Y. (2007). Overview of Russian heavy-ion inertial fusion energy program. Nucl. Instr. & Met. Phys. Res. 577, 1420.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Piriz, A.R., Redmer, R., Hoffmann, D.H.H., Fortov, V.E., Deutsch, C. & Bock, R.M. (2009). Proposed high energy density physics research using intense particle beams at FAIR: The HEDgeHOB collaboration. IEEE Trans. Plasma Sci. 37, 12671275.CrossRefGoogle Scholar
Yu, T.P., Chen, M. & Pukhov, A. (2009). High quality GeV proton beams from a density-modulated foil target. Laser Particle Beams 27, 611617.CrossRefGoogle Scholar