Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T05:36:40.377Z Has data issue: false hasContentIssue false

Immunohistochemical localisation of aquaporin 2 and vasopressin type 2 receptor in the human endolymphatic sac

Published online by Cambridge University Press:  12 December 2022

X Pan
Affiliation:
Department of Otolaryngology – Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
C Huang
Affiliation:
Department of Otolaryngology – Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
A Peng
Affiliation:
Department of Otolaryngology – Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
Z Zhang*
Affiliation:
Department of Otolaryngology – Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
*
Corresponding author: Zhiwen Zhang; Email: zhangzhiwen@csu.edu.cn

Abstract

Objective

This study aimed to determine the distribution and subcellular localisation of aquaporin 2 and vasopressin type 2 receptor in the human endolymphatic sac.

Methods

Ten samples of human endolymphatic sac were collected during acoustic neurinoma removal using the translabyrinthine approach. Immunohistochemistry and immunofluorescence were performed using aquaporin 2 and vasopressin type 2 receptor monoclonal antibodies.

Results

Confocal microscopy demonstrated that vasopressin type 2 receptor labelling was expressed in both the apical and basolateral plasma membranes, and in the cytoplasm of the endolymphatic sac epithelium, whereas aquaporin 2 was strongly expressed at the basolateral site of the endolymphatic sac epithelium, in both the intraosseous and extraosseous parts of the endolymphatic sac.

Conclusion

Both aquaporin 2 and vasopressin type 2 receptor were detected in the epithelial cells of the human endolymphatic sac, suggesting that this channel may be involved in inner-ear fluid homeostasis. However, strong basolateral expression of aquaporin 2 in endolymphatic sac epithelium suggested that the function of aquaporin 2 may differ between the endolymphatic sac and kidney.

Type
Main Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr Z Zhang takes responsibility for the integrity of the content of the paper

References

Beitz, E, Golldack, A, Rothert, M, von Bülow, J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015;155:223510.1016/j.pharmthera.2015.08.002CrossRefGoogle ScholarPubMed
Sawada, S, Takeda, T, Kitano, H, Takeuchi, S, Kakigi, A, Azuma, H. Aquaporin-2 regulation by vasopressin in the rat inner ear. Neuroreport 2002;13:1127–910.1097/00001756-200207020-00011CrossRefGoogle ScholarPubMed
Sawada, S, Takeda, T, Kitano, H, Takeuchi, S, Okada, T, Ando, M et al. Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea. Hear Res 2003;181:151910.1016/S0378-5955(03)00131-XCrossRefGoogle ScholarPubMed
Zhong, SX, Liu, ZH. Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig. ORL J Otorhinolaryngol Relat Spec 2003;65:284–910.1159/000075227CrossRefGoogle ScholarPubMed
Fukushima, K, Takeda, T, Kakigi, A, Takeda, S, Sawada, S, Nishioka, R et al. Effects of lithium on endolymph homeostasis and experimentally induced endolymphatic hydrops. ORL J Otorhinolaryngol Relat Spec 2005;67:282–810.1159/000089409CrossRefGoogle ScholarPubMed
Dong, SH, Kim, SS, Kim, SH, Yeo, SG. Expression of aquaporins in inner ear disease. Laryngoscope 2020;130:1532–910.1002/lary.28334CrossRefGoogle ScholarPubMed
Lopes Kde, C, Sartorato, EL, da Silva-Costa, SM, de Macedo Adamov, NS, Ganança, FF. Ménière's disease: molecular analysis of aquaporins 2, 3 and potassium channel KCNE1 genes in Brazilian patients. Otol Neurotol 2016;37:1117–2110.1097/MAO.0000000000001136CrossRefGoogle ScholarPubMed
Teggi, R, Carpini, SD, Zagato, L. Endolymphatic hydrops and ionic transporters: genetic and biohumoral aspects. J Neurol 2019;266:475110.1007/s00415-019-09399-6CrossRefGoogle ScholarPubMed
Dahlmann, A, von Düring, M. The endolymphatic duct and sac of the rat: a histological, ultrastructural, and immunocytochemical investigation. Cell Tissue Res 1995;282:277–8910.1007/BF00319118CrossRefGoogle Scholar
Bichet, DG. Lithium, cyclic AMP signaling, A-kinase anchoring proteins, and aquaporin-2. J Am Soc Nephrol 2006;17:920–210.1681/ASN.2006020135CrossRefGoogle ScholarPubMed
Conner, AC, Bill, RM, Conner, MT. An emerging consensus on aquaporin translocation as a regulatory mechanism. Mol Membr Biol 2013;30:11210.3109/09687688.2012.743194CrossRefGoogle ScholarPubMed
Maekawa, C, Kitahara, T, Kizawa, K, Okazaki, S, Kamakura, T, Horii, A et al. Expression and translocation of aquaporin-2 in the endolymphatic sac in patients with Meniere's disease. J Neuroendocrinol 2010;22:1157–6410.1111/j.1365-2826.2010.02060.xCrossRefGoogle ScholarPubMed
Takeda, T, Takeda, S, Kitano, H, Okada, T, Kakigi, A. Endolymphatic hydrops induced by chronic administration of vasopressin. Hear Res 2000;140:1610.1016/S0378-5955(99)00180-XCrossRefGoogle ScholarPubMed
Takeda, T, Sawada, S, Takeda, S, Kitano, H, Suzuki, M, Kakigi, A et al. The effects of V2 antagonist (OPC-31260) on endolymphatic hydrops. Hear Res 2003;182:91810.1016/S0378-5955(03)00135-7CrossRefGoogle ScholarPubMed
Couloigner, V, Berrebl, D, Teixeira, M, Paris, R, Florentin, A, Grayeli, AB et al. Aquaporin-2 in the human endolymphatic sac. Acta Otolaryngol 2004;124:449–5310.1080/00016480310000700aCrossRefGoogle ScholarPubMed
Taguchi, D, Takeda, T, Kakigi, A, Takumida, M, Nishioka, R, Kitano, H. Expressions of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid (TRPV)1, and TRPV4 in the human endolymphatic sac. Laryngoscope 2007;117:695–810.1097/mlg.0b013e318031c802CrossRefGoogle ScholarPubMed
Nielsen, S, Frøkiær, J, Marples, D, Kwon, T-H, Agre, P, Knepper, MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002;82:205–4410.1152/physrev.00024.2001CrossRefGoogle ScholarPubMed
Cohen, DM. TRPV4 and the mammalian kidney. Pfluger Arch Eur J Physiol 2005;451:168–7510.1007/s00424-005-1456-9CrossRefGoogle ScholarPubMed
Kumagami, H, Loewenheim, H, Beitz, E, Wild, K, Schwartz, H, Yamashita, K et al. The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Pflugers Arch 1998;436:970–510.1007/s004240050731CrossRefGoogle ScholarPubMed
Kakigi, A, Nishimura, M, Takeda, T, Taguchi, D, Nishioka, R. Expression of aquaporin1, 3, and 4, NKCC1, and NKCC2 in the human endolymphatic sac. Auris Nasus Larynx 2009;36:135–910.1016/j.anl.2008.04.012CrossRefGoogle ScholarPubMed
Aoki, M, Asai, M, Nishihori, T, Mizuta, K, Ito, Y, Ando, K. The relevance of an elevation in the plasma vasopressin levels to the pathogenesis of Meniere's attack. J Neuroendocrinol 2007;19:901–610.1111/j.1365-2826.2007.01601.xCrossRefGoogle Scholar
Kitahara, T, Doi, K, Maekawa, C, Kizawa, K, Horii, A, Kubo, T et al. Meniere's attacks occur in the inner ear with excessive vasopressin type-2 receptors. J Neuroendocrinol 2008;20:1295–30010.1111/j.1365-2826.2008.01792.xCrossRefGoogle ScholarPubMed
Takeda, T, Taguchi, D. Aquaporins as potential drug targets for Meniere's disease and its related diseases. Handb Exp Pharmacol 2009;190:171–8410.1007/978-3-540-79885-9_8CrossRefGoogle Scholar
Asmar, MH, Gaboury, L, Saliba, I. Ménière's disease pathophysiology: endolymphatic sac immunohistochemical study of aquaporin-2, V2R vasopressin receptor, NKCC2, and TRPV4. Otolaryngol Head Neck Surg 2018;158:721–810.1177/0194599818756829CrossRefGoogle ScholarPubMed