Hostname: page-component-6587cd75c8-67gbf Total loading time: 0 Render date: 2025-04-23T19:51:50.038Z Has data issue: false hasContentIssue false

Testing of Shoreline Erosion Monitoring Methodologies for Heritage at Risk Sites: Pockoy Island, South Carolina, USA

Published online by Cambridge University Press:  08 November 2024

Meg Gaillard*
Affiliation:
Archaeology; Land, Water and Conservation Division, South Carolina Department of Natural Resources, Columbia, SC, USA
Katie Luciano
Affiliation:
Geology; Land, Water and Conservation Division, South Carolina Department of Natural Resources; Charleston, SC, USA
Gary Sundin
Affiliation:
Wildlife Biology; Marine Resources Division, South Carolina Department of Natural Resources, Charleston, SC, USA
Kiersten Weber
Affiliation:
Archaeology; Land, Water and Conservation Division, South Carolina Department of Natural Resources, Columbia, SC, USA
Karen Y. Smith
Affiliation:
Archaeology; Land, Water and Conservation Division, South Carolina Department of Natural Resources, Columbia, SC, USA
*
Corresponding author: Meg Gaillard; Email: GaillardM@dnr.sc.gov

Abstract

We review shoreline monitoring methodologies used by members of the South Carolina Department of Natural Resources (SCDNR) Archaeology, Geology, and Wildlife Biology teams from February 2021 to December 2022 on Pockoy Island in Charleston County, South Carolina, USA. Our project objectives were to better understand the driving forces behind the landward movement of the shoreline (transgression), to apply new understanding to the rate of shoreline erosion of the island that directly impacts the Pockoy Island Shell Ring Complex (38CH2533), and to establish best practice for future community science monitoring efforts. Each member of our team used a different shoreline monitoring methodology (a nested methodology approach). Multiple unoccupied aerial vehicle (UAV)-derived orthoimagery datasets, on-the-ground transect measurements, and Arrow Gold real-time kinematic (RTK) unit measurements have been collected monthly following significant storms or king (perigean) tide events. Moving forward, the erosion transect approach tested within this project will serve as the foundation for community science monitoring at heritage at-risk sites in South Carolina. In this article, we introduce initial efforts in establishing a community science monitoring program in South Carolina that will influence future research, land management, and policy, and we propose how our research might be adapted for other sites at risk.

Resumen

Resumen

Nosotros revisamos métodos de monitoreo de la línea costera usadas por miembros de equipos de arqueología, geología, y biología de la vida silvestre del Departamento de Recursos Naturales de Carolina del Sur desde febrero 2021-diciembre 2022 en la isla de Pockoy en el condado de Charleston, Carolina del Sur, Estados Unidos. Los objetivos de nuestro proyecto fueran comprender las causas primarias del movimiento de la costa hacia la tierra, aplicar comprensión nueva sobre la velocidad a la que se pierde la tierra de la isla que impacta el sitio que lleva por nombre Pockoy Island Shell Ring Complex (38CH2533), y establecer mejores prácticas para futuros esfuerzos de monitoreo científico por parte de la comunidad. Cada miembro del equipo usó una metodología diferente (un enfoque de metodologías anidadas). Múltiples conjuntos de datos de orto-imágenes recogidos por vehículo aéreo desocupado (UAV), medidas de transecto, y medidas de Arrow Gold real-time kinematic (RTK) han sido coleccionados cada mes después de tormentas fuertes o mareas reales (mareas del perigeo). Pensando en el futuro, las medidas de transecto investigadas por este proyecto serán la fundación para un monitoreo científico por parte de la comunidad en los lugares de patrimonio en riesgo de Carolina del Sur. En este documento, nosotros introducimos los primeros esfuerzos para establecer un programa de monitoreo científico por parte de la comunidad en Carolina del Sur que influirá futuras investigaciones, gestión de tierras, y póliza; y proponemos cómo nuestro estudio puede ser aplicado a otros lugares en riesgo.

Type
How to Series
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

References Cited

Anderson, David G., Bissett, Thaddeus G., Yerka, Stephen J., Wells, Joshua J., Kansa, Eric C., Kansa, Sarah W., Myers, Kelsey Noack, Carl DeMuth, R., and White, Devin A.. 2017. Sea-Level Rise and Archaeological Site Destruction: An Example from the Southeastern United States Using DINAA (Digital Index of North American Archaeology). PLoS ONE 12(11):e0188142. https://doi.org/10.1371/journal.pone.0188142.CrossRefGoogle ScholarPubMed
Barker, Louise, and Corns, Anthony (editors). 2023. CHERISH: Sharing Our Practice. Investigating Heritage and Climate Change in Coastal and Maritime Environments. A Guide to the CHERISH Toolkit. CHERISH/ RCAHMW, Aberystwyth, Wales. https://cherishproject.eu/en/sharing-our-practice/, accessed April 5, 2024.Google Scholar
Buzard, Richard M., Overbeck, Jacquelyn R., and Maio, Christopher V.. 2019. Community-Based Methods for Monitoring Coastal Erosion. Alaska Division of Geological & Geophysical Surveys, Fairbanks. https://doi.org/10.14509/30182.CrossRefGoogle Scholar
Dawson, Tom, Hambly, Joanna, Lees, William, and Miller, Sarah E.. 2021. Proposed Policy Guidelines for Managing Heritage at Risk Based on Public Engagement and Communicating Climate Change. Historic Environment 12(3–4):375394. https://doi.org/10.1080/17567505.2021.1963573.CrossRefGoogle Scholar
Dawson, Tom, Nimura, Courtney, López-Romero, Elías, and Daire, Marie-Yvane (editors). 2017. Public Archaeology and Climate Change. Oxbow Books, Oxford.CrossRefGoogle Scholar
Florida Public Archaeology Network. 2020. HMS Florida Site Assessment Instructions. Florida Public Archaeology Network. Electronic document, https://old.fpan.us/projects/Documents/HMSAssessmentInstructions_2021.pdf, accessed April 5, 2024.Google Scholar
Gatto, Lawrence. 1988. Techniques for Measuring Reservoir Bank Erosion. US Army Corps of Engineers, Cold Regions, Research and Engineering Laboratory, Hanover, Ohio.Google Scholar
Graham, Ellie, Hambly, Joanna, and Dawson, Tom. 2017. Learning from Loss: Eroding Coastal Heritage in Scotland. Humanities 6(4):87. https://doi.org/10.3390/h6040087.CrossRefGoogle Scholar
Harris, Michelle E., and Ellis, Jean T.. 2021. Comparing Tropical Cyclone and King Tide Impacts on a South Carolina Coastal Dune System. Journal of Coastal Research 37(5):923932. https://doi.org/10.2112/JCOASTRES-D-21-00025.1.CrossRefGoogle Scholar
Hudson, H. R. 1982. A Field Technique to Directly Measure River Bank Erosion. Canadian Journal of Earth Sciences 19(2):381383. https://doi.org/10.1139/e82-030.CrossRefGoogle Scholar
Jackson, Chester W. 2018. Analyzing Moving Boundaries Using R – AMBUR. Georgia Southern University, Savannah. Electronic document, https://ambur.r-forge.r-project.org/, accessed April 5, 2024.Google Scholar
Laurie, Pete, and Harrigal, Dean (editors). 2009. ACE Basin Project Information Flyer 09-6625. South Carolina Department of Natural Resources (SCDNR). Electronic document, https://www.dnr.sc.gov/ml_images/docs/drivingace.pdf, accessed April 5, 2024.Google Scholar
Leatherman, Stephen P. 2003. Shoreline Change Mapping and Management along the U.S. East Coast. Journal of Coastal Research 81(38):513.Google Scholar
Morton, Robert. 1991. Accurate Shoreline Mapping: Past, Present, and Future. Coastal Sediments ’ 91 1:9971010.Google Scholar
Russo, Michael. 2002. Archaic Shell Rings of the Southeast U.S.: National Historic Landmarks Historic Context. National Register of Historic Places Multiple Property Documentation Form. Southeast Archeological Center, National Park Service, Tallahassee, Florida. Electronic document, http://www.npshistory.com/publications/nhl/theme-studies/archaic-shell-rings.pdf, accessed April 5, 2024.Google Scholar
Sandweiss, Daniel H., and Kelley, Alice R.. 2012. Archaeological Contributions to Climate Change Research: The Archaeological Record as a Paleoclimatic and Paleoenvironmental Archive. Annual Review of Anthropology 41:371391.CrossRefGoogle Scholar
Saynor, M. J., and Erskine, Wayne D.. 2006. Spatial and Temporal Variations in Bank Erosion on Sand-Bed Streams in the Seasonally Wet Tropics of Northern Australia. Earth Surface Processes and Landforms 31(9):10801099. https://doi.org/10.1002/esp.1310.CrossRefGoogle Scholar
Sexton, W. J., and Hayes, M. O.. 1983. Prognosis of Future Shoreline Changes on Botany Bay Island, South Carolina. Final report submitted by Cubit Engineering, Clemson, South Carolina; RPI, Columbia, South Carolina. On file with the South Carolina Department of Natural Resources, Charleston.Google Scholar
Smith, Karen Y. 2023. South Carolina's 4,000-Year-Old Shell Rings. Research poster on file with the South Carolina Department of Natural Resources (SCDNR) Heritage Trust Program, Columbia.Google Scholar
Smith, Karen Y., Taylor, Sean, Ghaffar, Tariq, Gaillard, Meg, and Arrington, Tanner. 2021. Pockoy Island Shell Ring 1 Management Summary. Report on file with the South Carolina Department of Natural Resources (SCDNR) Heritage Trust Program, Columbia.Google Scholar
South Carolina Code of Laws. 2006. Chapter 17: Heritage Trust Program. Electronic document, https://www.scstatehouse.gov/code/t51c017.php, accessed April 25, 2023.Google Scholar
Valle-Levinson, Arnoldo, Dutton, Andrea, and Martin, Jonathan B.. 2017. Spatial and Temporal Variability of Sea Level Rise Hot Spots over the Eastern United States: Sea Level Rise Hot Spots over Eastern U.S. Geophysical Research Letters 44(15):78767882. https://doi.org/10.1002/2017GL073926.CrossRefGoogle Scholar