Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T03:23:56.178Z Has data issue: false hasContentIssue false

Alteration in microbes changed the contents of oviposition-deterrent pheromones on the Spodoptera litura egg surface

Published online by Cambridge University Press:  25 November 2024

Liming Hu
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Yirui Chen
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Qingjun Wu
Affiliation:
State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
Qiumei Zeng
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Taoli Zhang
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Guohui Yu
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Muyang He
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
Dasong Chen
Affiliation:
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
Xiangning Su
Affiliation:
Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
Yuping Zhang
Affiliation:
Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
Zhenfei Zhang
Affiliation:
Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Green Prevention and Control of Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs & Key Laboratory of High Technology for Plant Protection of Guangdong Province, Guangzhou, China
Jianmei Shen*
Affiliation:
Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
*
Corresponding author: Jianmei Shen; Email: shenjianmei@zhku.edu.cn

Abstract

Microorganisms symbiotic with insects, whether permanently or temporarily, play a crucial role in the nutrition, development, reproduction, defence, and metamorphosis regulation. In some Lepidoptera, oviposition-deterrent pheromones (ODPs) on egg surface were used by pregnant females to modify the behaviour of conspecifics to avoid excessive competition for limited resources. In this study, we constructed four different Spodoptera litura groups, including, OH, OA, SH, and OA, which either feed on different hosts or grow in different environments. The 16S rDNA libraries of microbes from the egg surface of the four groups were constructed and sequenced. According to alpha and beta diversity indices, the microbes in environments and diets considerably influenced the richness, diversity, and community compositions of the microbiota on egg surfaces. The quantity of the main ODP components and the corresponding oviposition-deterrent activity among four groups were significantly differed among the four groups. The result of this study revealed that altering of microbes in environments or diets considerably changed the contents of ODP and oviposition-deterrent activity. As ODPs impart oviposition-deterrent activity towards closely related species, the findings of this study suggest that we should pay more attention to the role of symbiotic microorganisms in changing the ability of insects, especially sympatric species, to occupy the optimal niche when developing novel pest-control strategies.

Type
Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Joint corresponding authors.

References

Ahmad, M, Ghaffar, A and Rafiq, M (2013) Host plants of leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian Journal of Agriculture and Biology 2013, 2328.Google Scholar
Anderson, P and Löfqvist, J (1996) Asymmetric oviposition behaviour and the influence of larval competition in the two pyralid moths Ephestia kuehniella and Plodia interpunctella. Oikos 76, 4756.CrossRefGoogle Scholar
Behar, A, Yuval, B and Jurkevitch, E (2008) Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. Journal of Insect Physiology 54, 13771383.CrossRefGoogle ScholarPubMed
Bertea, CM, Casacci, LP, Bonelli, S, Zampollo, A and Barbero, F (2020) Chemical, physiological and molecular responses of host plants to lepidopteran egg-laying. Frontiers in Plant Science 10, 1768.CrossRefGoogle ScholarPubMed
Brinkmann, N, Martens, R and Tebbe, CC (2008) Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Applied and Environmental Microbiology 74, 71897196.CrossRefGoogle ScholarPubMed
Calumpang, SMF (2013) Behavioral response of Spodoptera litura (F) (Lepidoptera: Noctuidae) to selected herbs and eggplant. Journal of the International Society for Southeast Asian Agricultural Sciences 19, 95103.Google Scholar
Caporaso, JG, Kuczynski, J, Stombaugh, J, Bittinger, K, Bushman, FD, Costello, EK, Fierer, N, Gonzalez Peña, A, Goodrich, JK, Gordon, JI, Huttley, GA, Kelley, ST, Knights, D, Koenig, JE, Ley, RE, Lozupone, CA, McDonald, D, Muegge, BD, Pirrung, M, Reeder, J, Sevinsky, JR, Turnbaugh, PJ, Walters, W, Widmann, J, Yatsunenko, T, Zaneveld, JR and Knight, R (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335336.CrossRefGoogle ScholarPubMed
Colman, DR, Toolson, EC and Takacs-Vesbach, CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21, 51245137.CrossRefGoogle ScholarPubMed
Conti, E, Salerno, G, Leombruni, B, Frati, F and Bin, F (2010) Short-range allelochemicals from a plant–herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid. Journal of Experimental Biology 213, 39113919.CrossRefGoogle Scholar
Dillon, R and Charnley, K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Research in Microbiology 153, 503509.CrossRefGoogle ScholarPubMed
Dixon, P (2003) A package of R functions for community ecology. Journal of Vegetation Science 14, 926937.CrossRefGoogle Scholar
Douglas, AE (2009) The microbial dimension in insect nutritional ecology. Functional Ecology 23, 3847.CrossRefGoogle Scholar
Edgar, RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996998.CrossRefGoogle ScholarPubMed
Engl, T and Kaltenpoth, M (2018) Influence of microbial symbionts on insect pheromones. Natural Product Reports 35, 386397.CrossRefGoogle ScholarPubMed
Fatouros, NE, Bukovinszkine-Kiss, G, Kalkers, LA, Soler Gamborena, R, Dicke, M and Hilker, M (2005) Oviposition-induced plant cues: do they arrest trichogramma wasps during host location? Entomologia Experimentalis et Applicata 115, 207215.CrossRefGoogle Scholar
Fatouros, NE, Broekgaarden, C, Bukovinszkine-Kiss, G, van Loon, JJA, Mumm, R, Huigens, ME, Dicke, M and Hilker, M (2008) Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America 105, 1003310038.CrossRefGoogle ScholarPubMed
Gimonneau, G, Tchioffo, MT, Abate, L, Boissière, A, Awono-Ambene, PH, Nsango, SE, Christen, R and Morlais, I (2014) Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infection Genetics and Evolution 28, 715724.CrossRefGoogle ScholarPubMed
Gomaa, HA (2010) Secretion of Spodoptera littoralis female reproductive system on deposited egg masses that possibly acts as oviposition deterring substance for conspecific females. Archives of Phytopathology and Plant Protection 43, 10811087.CrossRefGoogle Scholar
Gripenberg, S, Mayhew, PJ, Parnell, M and Roslin, T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecology Letters 13, 383393.CrossRefGoogle ScholarPubMed
Gupta, GP, Rani, S, Birah, A and Raghuraman, M (2005) Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 25, 5558.Google Scholar
Haynes, S, Darby, AC, Daniell, TJ, Webster, G, Van Veen, FJF, Godfray, HCJ, Prosser, JI and Douglas, AE (2003) Diversity of bacteria associated with natural aphid populations. Applied and Environmental Microbiology 69, 72167223.CrossRefGoogle ScholarPubMed
Hilfiker, O, Groux, R, Bruessow, F, Kiefer, K, Zeier, J and Reymond, P (2014) Insect eggs induce a systemic acquired resistance in Arabidopsis. The Plant Journal: for Cell and Molecular Biology 80, 10851094.CrossRefGoogle ScholarPubMed
Honda, K (2010) Chemical basis of differential oviposition by lepidopterous insects. Archives of Insect Biochemistry and Physiology 30, 123.CrossRefGoogle Scholar
Jackson, LL, Baker, GL and Henry, JE (1968) Effect of malamoeba locustae infection on the egg lipids of the grasshopper Melanoplus bivittatus. Journal of Insect Physiology 14, 17731778.CrossRefGoogle Scholar
Kellner, RLL (2003) The role of microorganisms for eggs and progeny. In Hilker, M and Meiners, T (eds), Chemoecology of Insect Eggs and Egg Deposition. Berlin, Vienna: Blackwell Publishers, pp. 149164.CrossRefGoogle Scholar
Li, GQ and Ishikawa, Y (2004) Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. Journal of Chemical Ecology 30, 14451456.CrossRefGoogle Scholar
Li, GQ, Han, ZJ, Mu, LJ, Qin, XR, Chen, CK and Wang, YC (2001) Natural oviposition-deterring chemicals in female cotton bollworm, Helicoverpa armigera (Hubner). Journal of Insect Physiology 47, 951956.Google Scholar
Li, DD, Li, JY, Hu, ZQ, Liu, TX and Zhang, SZ (2022) Fall armyworm gut bacterial diversity associated with different developmental stages, environmental habitats, and diets. Insects 13, 762.CrossRefGoogle ScholarPubMed
Li, B, Liu, FJ, He, X, Liu, XL and Lu, M (2023) Temporal transcriptomic changes in willow leaves oviposited by Plagiodera versicolora. Integrative Zoology 19, 784787.CrossRefGoogle ScholarPubMed
Liu, ML, Yu, HJ and Li, GQ (2008) Oviposition deterrents from eggs of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae): chemical identification and analysis by electroantennogram. Journal of Insect Physiology 54, 656662.CrossRefGoogle ScholarPubMed
Lundgren, LN (1975) Natural plant chemicals acting as oviposition deterrents on cabbage butterflies (Pieris btassicae (L.), P. Rapae (L.) and P. Napi (L.)). Zoologica Scripta 4, 253258.CrossRefGoogle Scholar
Magoc, T and Salzberg, SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 27, 29572963.Google ScholarPubMed
Malacrinò, A (2022) Host species identity shapes the diversity and structure of insect microbiota. Molecular Ecology 31, 723735.CrossRefGoogle ScholarPubMed
Marshall, DG, Jackson, TA, Unelius, CR, Wee, SL, Young, SD, Townsend, RJ and Suckling, DM (2016) Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland. Die Naturwissenschaften 103, 59.CrossRefGoogle Scholar
Mason, CJ and Raffa, KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environmental Entomology 43, 595604.CrossRefGoogle ScholarPubMed
Mazorra-Alonso, M, Tomás, G and Soler, JJ (2021) Microbially mediated chemical ecology of animals: a review of its role in conspecific communication, parasitism and predation. Biology 10, 274.CrossRefGoogle ScholarPubMed
Moyano, A, Croce, AC and Scolari, F (2023) Pathogen-mediated alterations of insect chemical communication: from pheromones to behavior. Pathogens (Basel, Switzerland) 12, 1350.Google ScholarPubMed
Nufio, CR and Papaj, DR (2001) Host marking behavior in phytophagous insect and parasitoids. Entomologia Experimentalis et Applicata 99, 273293.CrossRefGoogle Scholar
Paniagua Voirol, LR, Frago, E, Kaltenpoth, M, Hilker, M and Fatouros, NE (2018) Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Frontiers in Microbiology 9, 556.CrossRefGoogle ScholarPubMed
Provorov, NA and Onishchuk, OP (2018) Microbial symbionts of insects: genetic organization, adaptive role, and evolution. Microbiology (Reading, England) 87, 151163.Google Scholar
Qiao, HL, Keesey, IW, Hansson, BS and Knaden, M (2019) Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. Journal of Experimental Biology 222, jeb192500.CrossRefGoogle ScholarPubMed
Roewer, L (1996) Analysis of molecular variance (AMOVA) of Y-chromosome-specific microsatellites in two closely related human populations. Human Molecular Genetics 5, 10291033.CrossRefGoogle ScholarPubMed
Růžička, Z (1996) Oviposition-deterring pheromone in Chrysopidae (Neuroptera): intra-and interspecific effects. European Journal of Entomology 93, 161166.Google Scholar
Schloss, PD, Delalibera, IT, Handelsman, J and Raffa, KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology 35, 625629.CrossRefGoogle Scholar
Segata, N, Izard, J, Waldron, L, Gevers, D, Miropolsky, L, Garrett, WS and Huttenhower, C (2011) Metagenomic biomarker discovery and explanation. Genome Biology 12, R60.CrossRefGoogle ScholarPubMed
Sharon, G, Segal, D, Ringo, JM, Hefetz, A, Zilber-Rosenberg, I and Rosenberg, E (2011) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 107, 2005120056.CrossRefGoogle Scholar
Thompson, JN and Pellmyr, O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annual Review of Entomology 36, 6589.CrossRefGoogle Scholar
Ulmer, B, Gillott, C and Erlandson, M (2003) Conspecific eggs and bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), oviposition site selection. Environmental Entomology 32, 529534.CrossRefGoogle Scholar
Wang, Q, Garrity, GM, Tiedje, JM and Cole, JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 52615267.CrossRefGoogle ScholarPubMed
Wang, K, Liu, Q, Liu, CQ, Geng, LL, Wang, GR, Zhang, J and Shu, CL (2021) Dominant egg surface bacteria of Holotrichia oblita (Coleoptera: Scarabaeidae) inhibit the multiplication of Bacillus thuringiensis and Beauveria bassiana. Scientific Reports 11, 9499.CrossRefGoogle ScholarPubMed
Wierz, JC, Gaube, P, Klebsch, D, Kaltenpoth, M and Flórez, LV (2021) Transmission of bacterial symbionts with and without genome erosion between a beetle host and the plant environment. Frontiers in Microbiology 12, 715601.CrossRefGoogle ScholarPubMed
Xia, X, Lan, B, Tao, X, Lin, J and You, M (2020) Characterization of Spodoptera litura gut bacteria and their role in feeding and growth of the host. Frontiers in Microbiology 11, 1492.CrossRefGoogle ScholarPubMed
Xu, L, Lu, M, Xu, D, Chen, L and Sun, J (2016) Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. Journal of Insect Physiology 95, 110117.CrossRefGoogle ScholarPubMed
Xu, L, Deng, J, Zhou, F, Cheng, C, Zhang, L, Zhang, J and Lu, M (2019) Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. Journal of Pest Science 92, 343351.CrossRefGoogle Scholar
Zhang, XG, Li, X, Gao, YL, Liu, Y, Dong, WX and Xiao, C (2018) Oviposition deterrents in larval frass of potato tuber worm moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Neotropical Entomology 48, 496502.CrossRefGoogle Scholar
Zhang, YX, Zhang, SK and Xu, LT (2023) The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. Npj Biofilms and Microbiomes 9, 66.CrossRefGoogle ScholarPubMed
Zhou, J, Duan, J, Gao, M, Wang, Y, Wang, X and Zhao, K (2019) Diversity, roles, and biotechnological applications of symbiotic microorganisms in the gut of termite. Current Microbiology 76, 755761.CrossRefGoogle ScholarPubMed