Published online by Cambridge University Press: 01 April 2024
Identifying the governing parameters of self-sustained oscillation is crucial for the diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we propose and validate a novel method for computing the parameters of thermoacoustic oscillation in a stochastic environment, which exploits a physics-informed neural network (PINN). Specifically, we introduce a negative log-likelihood loss function that integrates the stochastic samples and the solution of the Fokker–Planck equation. The proposed framework is validated using the numerically generated signal and the experimental data obtained from an annular combustor, both before and after the supercritical Hopf bifurcation. The results of PINN-based system identification show good agreement with the actual system parameters and the original stochastic signal, with improved accuracy compared to established methods. To the best of our knowledge, this study constitutes the first demonstration of the PINN-inverse approach that uses the noise-induced dynamics of thermoacoustic systems, opening up new pathways for diagnosing and predicting the thermoacoustic behaviour of various combustion systems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.