Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T22:04:28.698Z Has data issue: false hasContentIssue false

Vitamin D and depression in older adults: lessons learned from observational and clinical studies

Published online by Cambridge University Press:  13 January 2022

Gilciane Ceolin
Affiliation:
Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Luciana da Conceição Antunes
Affiliation:
Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Morgana Moretti
Affiliation:
Postgraduate Program in Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Débora Kurrle Rieger
Affiliation:
Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
Júlia Dubois Moreira*
Affiliation:
Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil Translational Nutritional Neuroscience working Group, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
*
*Corresponding author: Prof. Júlia D. Moreira, email juliamoreira@gmail.com

Abstract

Depression is a mental disorder triggered by the interaction of social, psychological and biological factors that have an important impact on an individual’s life. Despite being a well-studied disease with several established forms of treatment, its prevalence is increasing, especially among older adults. New forms of treatment and prevention are encouraged, and some researchers have been discussing the effects of vitamin D (VitD) on depression; however, the exact mechanism by which VitD exerts its effects is not yet conclusive. In this study, we aimed to discuss the possible mechanisms underlying the association between VitD and depression in older adults. Therefore, we conducted a systematic search of databases for indexed articles published until 30 April 2021. The primary focus was on both observational studies documenting the association between VitD and depression/depressive symptoms, and clinical trials documenting the effects of VitD supplementation on depression/depressive symptoms, especially in older adults. Based on pre-clinical, clinical and observational studies, it is suggested that the maintenance of adequate VitD concentrations is an important issue, especially in older adults, which are a risk population for both VitD deficiency and depression. Nevertheless, it is necessary to carry out more studies using longitudinal approaches in low- and middle-income countries to develop a strong source of evidence to formulate guidelines and interventions.

Type
Review Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2014) Manual diagnóstico e estatístico de transtornos mentais: DSM-5 [Diagnostic and Statistical Manual of MentalDisorders. DSM-5]. 5 th ed. Porto Alegre: Artmed.Google Scholar
Chisholm, D, Sweeny, K, Sheehan, P, et al. (2016) Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiat 3, 415424.CrossRefGoogle ScholarPubMed
Olesen, J, Gustavsson, A, Svensson, M, et al. (2012) The economic cost of brain disorders in Europe. Eur J Neurol 19, 155162.CrossRefGoogle ScholarPubMed
World Health Organization (2020) Depression [Internet]. [cited 2020 Feb 13]. Available from: https://www.who.int/news-room/fact-sheets/detail/depression Google Scholar
World Health Organization (2017) Depression and Other Common Mental Disorders: Global Health Estimates [Internet]. Geneva: World Health Organization, p. 27. Available from: http://www.who.int/mental_health/management/depression/prevalence_global_health_estimates/en/ Google Scholar
World Health Organization (2017) Mental health of older adults [Internet]. [cited 2021 Apr 22]. Available from: https://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults Google Scholar
Global Health Metrics (2019) Depressive Disorders — Level 3 Cause [Internet]. Institute for Health Metrics and Evaluation. [cited 2021 Jan 6]. Available from: http://www.healthdata.org/results/gbd_summaries/2019/depressive-disorders-level-3-cause Google Scholar
James, SL, Abate, D, Abate, KH, et al. (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet; 392, 17891858.CrossRefGoogle Scholar
DiLuca, M & Olesen, J (2014) The cost of brain diseases: a burden or a challenge? Neuron 82, 12051208.CrossRefGoogle ScholarPubMed
Knapp, M & Wong, G (2020) Economics and mental health: the current scenario. World Psychiatry 19, 314.CrossRefGoogle ScholarPubMed
World Health Organization, editor. (2018) Mental Health Atlas 2017 [Internet]. Geneva, Switzerland: World Health Organization. Available from: https://apps.who.int/iris/bitstream/handle/10665/272735/9789241514019-eng.pdf Google Scholar
Whiteford, HA, Ferrari, AJ, Degenhardt, L, et al. (2015) The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PloS One 10, e0116820.CrossRefGoogle ScholarPubMed
World Health Organization (2013) WHO | Mental Health Action Plan 2013–2020 [Internet]. WHO. [cited 2020 Feb 13]. Available from: http://www.who.int/entity/mental_health/publications/action_plan/en/index.html Google Scholar
Li, M, D’Arcy, C & Meng, X (2016) Maltreatment in childhood substantially increases the risk of adult depression and anxiety in prospective cohort studies: systematic review, meta-analysis, and proportional attributable fractions. Psychol Med 46, 717730.CrossRefGoogle ScholarPubMed
Andrade, FCD, Wu, F, Lebrão, ML, et al. (2016) Life expectancy without depression increases among Brazilian older adults. Rev Saúde Pública 50, 12.CrossRefGoogle ScholarPubMed
Kaltenboeck, A & Harmer, C (2018) The neuroscience of depressive disorders: a brief review of the past and some considerations about the future. Brain Neurosci Adv SAGE Publications Ltd STM; 2, 2398212818799269.CrossRefGoogle ScholarPubMed
Otte, C, Gold, SM, Penninx, BW, et al. (2016) Major depressive disorder. Nat Rev Dis Primers 2, 120.CrossRefGoogle ScholarPubMed
Lai, JS, Hiles, S, Bisquera, A, et al. (2014) A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr 99, 181197.CrossRefGoogle ScholarPubMed
Camargo, A, Dalmagro, AP, Rikel, L, et al. (2018) Cholecalciferol counteracts depressive-like behavior and oxidative stress induced by repeated corticosterone treatment in mice. Eur J Pharmacol 833, 451461.CrossRefGoogle ScholarPubMed
Fedotova, J, Dudnichenko, T, Kruzliak, P, et al. (2016) Different effects of vitamin D hormone treatment on depression-like behavior in the adult ovariectomized female rats. Biomed Pharmacother 84, 18651872.CrossRefGoogle ScholarPubMed
Spedding, S (2014) Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients 6, 15011518.CrossRefGoogle ScholarPubMed
Bikle, DD (2012) Vitamin D and the skin: physiology and pathophysiology. Rev Endocr Metab Disord 13, 319.CrossRefGoogle ScholarPubMed
Jäpelt, RB & Jakobsen, J (2013) Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci Frontiers Media SA; [cited 2020 Apr 2]; 4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651966/ CrossRefGoogle ScholarPubMed
Johnson, EJ & Mohn, ES (2015) Fat-soluble vitamins. Nutr Prim Care Provider 111, 3844.CrossRefGoogle ScholarPubMed
Norman, AW (2012) The history of the discovery of vitamin D and its daughter steroid hormone. ANM 61, 199206.Google ScholarPubMed
Umar, M, Sastry, KS & Chouchane, AI (2018) Role of vitamin D beyond the skeletal function: a review of the molecular and clinical studies. Int J Mol Sci [cited 2020 Sep 17]; 19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032242/ CrossRefGoogle ScholarPubMed
Berridge, MJ (2017) Vitamin D and depression: cellular and regulatory mechanisms. Pharmacol Rev 69, 8092.CrossRefGoogle ScholarPubMed
Kesby, JP, Eyles, DW, Burne, THJ, et al. (2011) The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol 347, 121127.CrossRefGoogle ScholarPubMed
Mayne, PE & Burne, THJ (2019) Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci 42, 293306.CrossRefGoogle ScholarPubMed
Smaga, I, Niedzielska, E, Gawlik, M, et al. (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 67, 569580.CrossRefGoogle Scholar
Landel, V, Stephan, D, Cui, X, et al. (2018) Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol 177, 129134.CrossRefGoogle ScholarPubMed
Palacios, C & Gonzalez, L (2014) Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol 144, Pt A, 138145.CrossRefGoogle ScholarPubMed
Ganji, V, Zhang, X & Tangpricha, V (2012) Serum 25-hydroxyvitamin D concentrations and prevalence estimates of hypovitaminosis D in the U.S. population based on assay-adjusted data. J Nutr 142, 498507.CrossRefGoogle ScholarPubMed
Whiting, SJ, Langlois, KA, Vatanparast, H, et al. (2011) The vitamin D status of Canadians relative to the 2011 Dietary Reference intakes: an examination in children and adults with and without supplement use. Am J Clin Nutr 94, 128135.CrossRefGoogle Scholar
Lu, H-K, Zhang, Z, Ke, Y-H, et al. (2012) High prevalence of vitamin D insufficiency in China: relationship with the levels of parathyroid hormone and markers of bone turnover. PloS One 7, e47264.CrossRefGoogle Scholar
Pereira-Santos, M, Santos, JYG dos, Carvalho, GQ, et al. (2019) Epidemiology of vitamin D insufficiency and deficiency in a population in a sunny country: geospatial meta-analysis in Brazil. Crit Rev Food Sci Nutr 59, 21022109.CrossRefGoogle Scholar
Marwaha, RK, Tandon, N, Garg, MK, et al. (2011) Vitamin D status in healthy Indians aged 50 years and above. J Assoc Phys India 59, 706709.Google ScholarPubMed
Sud, SR, Montenegro-Bethancourt, G, Bermúdez, OI, et al. (2010) Older Mayan residents of the western highlands of Guatemala lack sufficient levels of vitamin D. Nutr Res 30, 739746.CrossRefGoogle ScholarPubMed
Bouillon, R (2017) Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol Nature Publishing Group; 13, 466479.CrossRefGoogle ScholarPubMed
Sempos, CT, Heijboer, AC, Bikle, DD, et al. (2018) Vitamin D assays and the definition of hypovitaminosis D: results from the First International Conference on Controversies in Vitamin D. Br J Clin Pharmacol 84, 21942207.CrossRefGoogle ScholarPubMed
Arabi, A, El Rassi, R & El-Hajj Fuleihan, G (2010) Hypovitaminosis D in developing countries—prevalence, risk factors and outcomes. Nat Rev Endocrinol 6, 550561.CrossRefGoogle ScholarPubMed
Feizabad, E, Hossein-Nezhad, A, Maghbooli, Z, et al. (2017) Impact of air pollution on vitamin D deficiency and bone health in adolescents. Arch Osteoporos 12, 34.CrossRefGoogle ScholarPubMed
Amrein, K, Scherkl, M, Hoffmann, M, et al. (2020) Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr Nature Publishing Group 74, 14981513.CrossRefGoogle ScholarPubMed
Cesari, M, Incalzi, RA, Zamboni, V, et al. (2011) Vitamin D hormone: a multitude of actions potentially influencing the physical function decline in older persons. Geriatr Gerontol Int 11, 133142.CrossRefGoogle ScholarPubMed
Holick, MF (2006) High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 81, 353373.CrossRefGoogle ScholarPubMed
Luo, J, Quan, Z, Lin, S, et al. (2018) The association between blood concentration of 25- hydroxyvitamin D and sarcopenia: a meta-analysis. Asia Pac J Clin Nutr 27, 12581270.Google ScholarPubMed
Dudenkov, DV, Mara, KC, Petterson, TM, et al. (2018) Serum 25-Hydroxyvitamin D values and risk of all-cause and cause-specific mortality: a population-based cohort study. Mayo Clin Proc 93, 721730.CrossRefGoogle ScholarPubMed
Tian, XQ & Holick, MF (1995) Catalyzed thermal isomerization between previtamin D3 and vitamin D3 via beta-cyclodextrin complexation. J Biol Chem 270, 87068711.CrossRefGoogle ScholarPubMed
Bikle, D & Christakos, S (2020) New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol Nature Publishing Group; 16, 234252.CrossRefGoogle ScholarPubMed
Wacker, M & Holick, MF (2013) Sunlight and vitamin D: a global perspective for health. Dermato-Endocrinol 5, 51108.CrossRefGoogle ScholarPubMed
Bouillon, R, Marcocci, C, Carmeliet, G, et al. (2019) Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev Oxford Academic; 40, 11091151.CrossRefGoogle ScholarPubMed
Reboul, E (2015) Intestinal absorption of vitamin D: from the meal to the enterocyte. Food Funct The Royal Society of Chemistry; 6, 356362.CrossRefGoogle Scholar
Gil, Á, Plaza-Diaz, J & Mesa, MD (2018) Vitamin D: classic and novel actions. ANM Karger Publishers; 72, 8795.Google ScholarPubMed
Holick, MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr Oxford Academic; 80, 1678S1688S.CrossRefGoogle ScholarPubMed
Prabhu, AV, Luu, W, Li, D, et al. (2016) DHCR7: a vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 64, 138151.CrossRefGoogle ScholarPubMed
Wacker, M & Holick, MF (2013) Vitamin D—effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 5, 111148.CrossRefGoogle ScholarPubMed
Holick, MF (2007) Vitamin D deficiency. N Engl J Med 357, 266281.CrossRefGoogle ScholarPubMed
Bikle, DD, Patzek, S & Wang, Y (2018) Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep 8, 255267.CrossRefGoogle ScholarPubMed
Bouillon, R, Carmeliet, G, Verlinden, L, et al. (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29, 726776.CrossRefGoogle ScholarPubMed
Haussler, MR, Jurutka, PW, Mizwicki, M, et al. (2011) Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 25, 543559.CrossRefGoogle ScholarPubMed
Chen, J, Olivares-Navarrete, R, Wang, Y, et al. (2010) Protein-disulfide Isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J Biol Chem American Society for Biochemistry and Molecular Biology; 285, 3704137050.CrossRefGoogle ScholarPubMed
Boyan, BD, Chen, J & Schwartz, Z (2012) Mechanism of Pdia3-dependent 1α,25-dihydroxy vitamin D3 signaling in musculoskeletal cells. Steroids 77, 892896.CrossRefGoogle ScholarPubMed
Zmijewski, MA & Carlberg, C (2020) Vitamin D receptor(s): in the nucleus but also at membranes? Exp Dermatol 29, 876884.CrossRefGoogle ScholarPubMed
Doroudi, M, Plaisance, MC, Boyan, BD, et al. (2015) Membrane actions of 1α,25(OH)2D3 are mediated by Ca2+/calmodulin-dependent protein kinase II in bone and cartilage cells. J Steroid Biochem Mol Biol 145, 6574.CrossRefGoogle Scholar
Stumpf, WE, Sar, M, Clark, SA, et al. (1982) Brain target sites for 1,25-dihydroxyvitamin D3. Science American Association for the Advancement of Science; 215, 14031405.CrossRefGoogle ScholarPubMed
DeLuca, GC, Kimball, SM, Kolasinski, J, et al. (2013) Review: I role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol John Wiley & Sons, Ltd; 39, 458484.CrossRefGoogle ScholarPubMed
Eyles, DW, Smith, S, Kinobe, R, et al. (2005) Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 29, 2130.CrossRefGoogle ScholarPubMed
Pardridge, WM, Sakiyama, R & Coty, WA (1985) Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J Neurochem 44, 11381141.CrossRefGoogle Scholar
Eyles, DW, Feron, F, Cui, X, et al. (2009) Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 34, S247S257.CrossRefGoogle ScholarPubMed
Cui, X, Gooch, H, Petty, A, et al. (2017) Vitamin D and the brain: genomic and non-genomic actions. Mol Cell Endocrinol 453, 131143.CrossRefGoogle ScholarPubMed
Warsh, JJ, Andreopoulos, S & Li, PP (2004) Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin Neurosci Res 4, 201213.CrossRefGoogle Scholar
Yuan, JP, Kiselyov, K, Shin, DM, et al. (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114, 777789.CrossRefGoogle ScholarPubMed
Kandel, ER, Schwartz, JH, Jessell, TM, et al. (2014) Princípios de neurociências [Principles of Neuroscience], 5th ed. Porto Alegre: AMGH.Google Scholar
Croarkin, PE, Levinson, AJ & Daskalakis, ZJ (2011) Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev 35, 818825.CrossRefGoogle ScholarPubMed
Bivona, G, Agnello, L, Bellia, C, et al. (2019) Non-Skeletal Activities of Vitamin D: From Physiology to Brain Pathology. Medicina (Kaunas) [cited 2020 Oct 18]; 55. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680897/ Google ScholarPubMed
Domínguez-López, S, Howell, R & Gobbi, G (2012) Characterization of serotonin neurotransmission in knockout mice: implications for major depression. Rev Neurosci De Gruyter; 23, 429443.CrossRefGoogle ScholarPubMed
Fakhoury, M (2016) Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol Neurobiol 53, 27782786.CrossRefGoogle ScholarPubMed
Ogawa, S, Fujii, T, Koga, N, et al. (2014) Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry 75, e906e915.CrossRefGoogle ScholarPubMed
Kaneko, I, Sabir, MS, Dussik, CM, et al. (2015) 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J 29, 40234035.CrossRefGoogle ScholarPubMed
Patrick, RP & Ames, BN (2015) Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J Federation of American Societies for Experimental Biology; 29, 22072222.CrossRefGoogle ScholarPubMed
Sabir, MS, Haussler, MR, Mallick, S, et al. (2018) Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr [cited 2020 Oct 1]; 13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042449/ CrossRefGoogle ScholarPubMed
Cui, X, Pelekanos, M, Liu, P-Y, et al. (2013) The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 236, 7787.CrossRefGoogle ScholarPubMed
Cui, X, Pertile, R, Liu, P, et al. (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 304, 90100.CrossRefGoogle ScholarPubMed
Sedaghat, K, Yousefian, Z, Vafaei, AA, et al. (2019) Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav Brain Res 356, 156169.CrossRefGoogle Scholar
McCarty, DE, Reddy, A, Keigley, Q, et al. (2012) Vitamin D, race, and excessive daytime sleepiness. J Clin Sleep Med 8, 693697.CrossRefGoogle ScholarPubMed
Mosavat, M, Smyth, A, Arabiat, D, et al. (2020) Vitamin D and sleep duration: is there a bidirectional relationship? Horm Mol Biol Clin Investig 41.Google Scholar
Jones, KS, Redmond, J, Fulford, AJ, et al. (2017) Diurnal rhythms of vitamin D binding protein and total and free vitamin D metabolites. J Steroid Biochem Mol Biol 172, 130135.CrossRefGoogle ScholarPubMed
Muscogiuri, G, Barrea, L, Scannapieco, M, et al. (2019) The lullaby of the sun: the role of vitamin D in sleep disturbance. Sleep Med 54, 262265.CrossRefGoogle ScholarPubMed
Lucock, M, Jones, P, Martin, C, et al. (2015) Vitamin D: beyond metabolism. J Evid Based Complement Altern Med SAGE Publications Inc STM; 20, 310322.CrossRefGoogle ScholarPubMed
Romano, F, Muscogiuri, G, Di Benedetto, E, et al. (2020) Vitamin D and sleep regulation: is there a role for vitamin D? Curr Pharm Des 26, 24922496.CrossRefGoogle Scholar
Dibner, C, Schibler, U & Albrecht, U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72, 517549.CrossRefGoogle ScholarPubMed
Stehle, JH, von Gall, C & Korf, H-W (2003) Melatonin: a clock-output, a clock-input. J Neuroendocrinol 15, 383389.CrossRefGoogle ScholarPubMed
Zhao, D, Yu, Y, Shen, Y, et al. (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol [Internet]. Frontiers; [cited 2021 May 4]; 10. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2019.00249/full CrossRefGoogle ScholarPubMed
Mocayar Marón, FJ, Ferder, L, Reiter, RJ, et al. (2020) Daily and seasonal mitochondrial protection: unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 199, 105595.CrossRefGoogle ScholarPubMed
Berk, M, Williams, LJ, Jacka, FN, et al. (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11, 200.CrossRefGoogle ScholarPubMed
Swardfager, W, Rosenblat, JD, Benlamri, M, et al. (2016) Mapping inflammation onto mood: inflammatory mediators of Anhedonia. Neurosci Biobehav Rev 64, 148166.CrossRefGoogle ScholarPubMed
Ticinesi, A, Meschi, T, Lauretani, F, et al. (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients [Internet]. [cited 2020 Apr 14]; 8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848655/ CrossRefGoogle ScholarPubMed
Lee, C-H & Giuliani, F (2019) The role of inflammation in depression and fatigue. Front Immunol [Internet] Jul 19 [cited 2020 Oct 9]; 10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658985/ CrossRefGoogle Scholar
Takeuchi, H, Jin, S, Wang, J, et al. (2006) Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an Autocrine Manner. J Biol Chem American Society for Biochemistry and Molecular Biology; 281, 2136221368.CrossRefGoogle Scholar
Capuron, L, Ravaud, A, Gualde, N, et al. (2001) Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy. Psychoneuroendocrinology 26, 797808.CrossRefGoogle ScholarPubMed
Capuron, L, Neurauter, G, Musselman, DL, et al. (2003) Interferon-alpha–induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment. Biol Psychiatry 54, 906914.CrossRefGoogle ScholarPubMed
Zhang, J, Terreni, L, De Simoni, MG, et al. (2001) Peripheral interleukin-6 administration increases extracellular concentrations of serotonin and the evoked release of serotonin in the rat striatum. Neurochem Int 38, 303308.CrossRefGoogle ScholarPubMed
Calton, EK, Keane, KN, Newsholme, P, et al. (2015) The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS One [cited 2020 Apr 17]; 10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631349/ CrossRefGoogle ScholarPubMed
Boontanrart, M, Hall, SD, Spanier, JA, et al. (2016) Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol 292, 126136.CrossRefGoogle ScholarPubMed
Lee, PW, Selhorst, A, Lampe, SG, et al. (2020) Neuron-specific vitamin D signaling attenuates microglia activation and CNS autoimmunity. Front Neurol 11, 19.CrossRefGoogle ScholarPubMed
Garcion, E, Sindji, L, Leblondel, G, et al. (1999) 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 73, 859866.CrossRefGoogle ScholarPubMed
Garcion, E, Sindji, L, Montero-Menei, C, et al. (1998) Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxyvitamin D3. Glia 22, 282294.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Camargo, A, Dalmagro, AP, Platt, N, et al. (2020) Cholecalciferol abolishes depressive-like behavior and hippocampal glucocorticoid receptor impairment induced by chronic corticosterone administration in mice. Pharmacol Biochem Behav 196, 172971.CrossRefGoogle ScholarPubMed
da Silva Souza, SV, da Rosa, PB, Neis, VB, et al. (2020) Effects of cholecalciferol on behavior and production of reactive oxygen species in female mice subjected to corticosterone-induced model of depression. Naunyn-Schmiedeberg’s Arch Pharmacol 393, 111120.CrossRefGoogle ScholarPubMed
Neurauter, G, Schrocksnadel, K, Scholl-Burgi, S, et al. (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9, 622627.CrossRefGoogle ScholarPubMed
Lindqvist, D, Dhabhar, FS, James, SJ, et al. (2017) Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 76, 197205.CrossRefGoogle ScholarPubMed
Zhu, C, Zhang, Y, Wang, T, et al. (2020) Vitamin D supplementation improves anxiety but not depression symptoms in patients with vitamin D deficiency. Brain Behav 10, e01760.CrossRefGoogle Scholar
Kjærgaard, M, Waterloo, K, Wang, CEA, et al. (2012) Effect of vitamin D supplement on depression scores in people with low levels of serum 25-hydroxyvitamin D: nested case—control study and randomised clinical trial. Br J Psychiatry Cambridge University Press; 201, 360368.CrossRefGoogle ScholarPubMed
Vieth, R, Kimball, S, Hu, A, et al. (2004) Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutr J 3, 8.CrossRefGoogle ScholarPubMed
Vellekkatt, F, Menon, V, Rajappa, M, et al. (2020) Effect of adjunctive single dose parenteral Vitamin D supplementation in major depressive disorder with concurrent vitamin D deficiency: a double-blind randomized placebo-controlled trial. J Psychiatr Res 129, 250256.CrossRefGoogle ScholarPubMed
de Koning, EJ, Lips, P, Penninx, BWJH, et al. (2019) Vitamin D supplementation for the prevention of depression and poor physical function in older persons: the D-Vitaal study, a randomized clinical trial. Am J Clin Nutr 110, 11191130.CrossRefGoogle ScholarPubMed
Okereke, OI, Reynolds, CF, Mischoulon, D, et al. (2020) Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: a randomized clinical trial. JAMA 324, 471480.CrossRefGoogle ScholarPubMed
Alghamdi, S, Alsulami, N, Khoja, S, et al. (2020) Vitamin D supplementation ameliorates severity of major depressive disorder. J Mol Neurosci 70, 230235.CrossRefGoogle ScholarPubMed
Zajac, IT, Barnes, M, Cavuoto, P, et al. (2020) The effects of vitamin D-enriched mushrooms and vitamin D3 on cognitive performance and mood in healthy elderly adults: a randomised, double-blinded, placebo-controlled trial. Nutrients 12, 3847.CrossRefGoogle ScholarPubMed
Gugger, A, Marzel, A, Orav, EJ, et al. (2019) Effect of monthly high-dose vitamin D on mental health in older adults: secondary analysis of a RCT. J Am Geriatr Soc 67, 12111217.CrossRefGoogle ScholarPubMed
Alavi, NM, Khademalhoseini, S, Vakili, Z, et al. (2019) Effect of vitamin D supplementation on depression in elderly patients: a randomized clinical trial. Clin Nutr Elsevier; 38, 20652070.CrossRefGoogle ScholarPubMed
Hansen, JP, Pareek, M, Hvolby, A, et al. (2019) Vitamin D3 supplementation and treatment outcomes in patients with depression (D3-vit-dep). BMC Res Notes 12, 203.CrossRefGoogle ScholarPubMed
Aucoin, M, Cooley, K, Anand, L, et al. (2018) Adjunctive vitamin D in the treatment of non-remitted depression: lessons from a failed clinical trial. Complement Ther Med 36, 3845.CrossRefGoogle ScholarPubMed
Yalamanchili, V & Gallagher, JC (2018) Dose ranging effects of vitamin D3 on the geriatric depression score: a clinical trial. J Steroid Biochem Mol Biol 178, 6064.CrossRefGoogle ScholarPubMed
Mozaffari-Khosravi, H, Nabizade, L, Yassini-Ardakani, SM, et al. (2013) The effect of 2 different single injections of high dose of vitamin D on improving the depression in depressed patients with vitamin D deficiency: a randomized clinical trial. J Clin Psychopharmacol 33, 378385.CrossRefGoogle ScholarPubMed
Khoraminya, N, Tehrani-Doost, M, Jazayeri, S, et al. (2013) Efeitos terapêuticos da vitamina D como terapia adjuvantunctionaltina em pacientes com transtounctionalsivo maior [Therapeutic effects of vitamin Das adjunctive therapy to fluoxetine in patients with major depressive disorder]. Aust N Z J Psychiatry 47, 271275.CrossRefGoogle Scholar
Bertone-Johnson, ER, Powers, SI, Spangler, L, et al. (2012) Vitamin D supplementation and depression in the women’s health initiative calcium and vitamin D trial. Am J Epidemiol 176, 113.CrossRefGoogle ScholarPubMed
Dean, AJ, Bellgrove, MA, Hall, T, et al. (2011) Effects of vitamin D supplementation on cognitive and emotional functioning in young adults – a randomised controlled trial. PLOS One Public Library of Science; 6, e25966.CrossRefGoogle ScholarPubMed
Sanders, KM, Stuart, AL, Williamson, EJ, et al. (2011) Annual high-dose vitamin D3 and mental well-being: randomised controlled trial. Br J Psychiatry Cambridge University Press; 198, 357364.CrossRefGoogle ScholarPubMed
Jorde, R, Sneve, M, Figenschau, Y, et al. (2008) Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial. J Intern Med 264, 599609.CrossRefGoogle ScholarPubMed
Gowda, U, Mutowo, MP, Smith, BJ, et al. (2015) Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition 31, 421429.CrossRefGoogle ScholarPubMed
Di Gessa, G, Biddulph, JP, Zaninotto, P, et al. (2021) Changes in vitamin D levels and depressive symptoms in later life in England. Sci Rep 11, 7724.CrossRefGoogle ScholarPubMed
Mulugeta, A, Lumsden, A & Hyppönen, E (2021) Relationship between Serum 25(OH)D and depression: causal evidence from a bi-directional Mendelian randomization study. Nutrients Multidisciplinary Digital Publishing Institute; 13, 109.CrossRefGoogle Scholar
va, n den Berg, KS, Hegeman, JM, van den Brink, RHS, et al. (2021) A prospective study into change of vitamin D levels, depression and frailty among depressed older persons. Int J Geriatr Psychiatry 36, 10291036.Google Scholar
Ceolin, G, Matsuo, LH, Confortin, SC, et al. (2020) Lower serum 25-hydroxycholecalciferol is associated with depressive symptoms in older adults in Southern Brazil. Nutr J 19, 123.CrossRefGoogle ScholarPubMed
Sahasrabudhe, N, Lee, JS, Scott, TM, et al. (2020) Serum vitamin D and depressive symptomatology among Boston-area Puerto Ricans. J Nutr 150, 32313240.CrossRefGoogle ScholarPubMed
Köhnke, C, Herrmann, M & Berger, K (2020) Associations of major depressive disorder and related clinical characteristics with 25-hydroxyvitamin D levels in middle-aged adults. Nutr Neurosci Taylor & Francis; 0, 110.Google Scholar
Granlund, LE, Ramnemark, AK, Andersson, C, et al. (2020) Vitamin D status was not associated with anxiety, depression, or health-related quality of life in Middle Eastern and African-born immigrants in Sweden. Nutr Res 75, 109118.CrossRefGoogle ScholarPubMed
Rhee, SJ, Lee, H & Ahn, YM (2020) Serum vitamin D concentrations are associauncwith depressive symptoms in mIthe Sixth Korea National Health and Nutrition Examination Survey 2014. Front Psychiatry. Frontiers; [cited 2021 Mar 25]; 11. Available from: https://www.frontiersin.org/articles/10.3389/fpsyt.2020.00756/full CrossRefGoogle Scholar
Bigman, G (2020) Vitamin D metabolites, D3 and D2, and their independent associations with depression symptoms among adults in the United States. Null Taylor & Francis; 19. doi: 10.1080/1028415X.2020.1794422.Google ScholarPubMed
Ronaldson, A, Arias de la Torre, J, Gaughran, F, et al. (2020) Prospective associations between vitamin D and depression in middle-aged adults: findings from the UK Biobank cohort. Psychol Med 21, 19.Google Scholar
Briggs, R, McCarroll, K, O’Halloran, A, et al. (2019) Vitamin D deficiency is assunced with an increased likelihood of incident depression in community-dwelling older adults. J Am Med Dir Assoc 20, 517523.CrossRefGoogle ScholarPubMed
Elstgeest, LEM, de Koning, EJ, Brouwer, IA, et al. (2018) Change in serum 25-hydroxyvitamin D and parallel change in depressive symptoms in Dutch older adults. Eur J Endocrinol 179, 239249.CrossRefGoogle ScholarPubMed
Sherchand, O, Sapkota, N, Chaudhari, RK, et al. (2018) Association between vitamin D deficiency and depression in Nepalese population. Psychiatry Res 267, 266271.CrossRefGoogle ScholarPubMed
Vidgren, M, Virtanen, JK, Tolmunen, T, et al. (2018) Serum concentrations of 25-hydroxyvitamin D and depression in a general middle-aged to elderly population in Finland. J Nutr Health Aging 22, 159164.CrossRefGoogle Scholar
Yao, Y, Fu, S, Zhang, H, et al. (2018) The prevalence of depressive symptoms in Chinese longevous persons and its correlation with vitamin D status. BMC Geriatr 18, 198.CrossRefGoogle ScholarPubMed
de Oliveira, C, Hirani, V & Biddulph, JP (2018) Associations between vitamin D levels and depressive symptoms in later life: euncce from the English Longitudinal Study of Ageing (ELSA). J Gerontol A Biol Sci Med Sci 73, 13771382.CrossRefGoogle ScholarPubMed
Jovanova, O, Aarts, N, Noordam, R, et al. (2017) Vitamin D serum levels are cross-sectionally but not prospectively associated with late-life depression. Acta Psychiatr Scand 135, 185194.CrossRefGoogle Scholar
Collin, C, Assmann, KE, Deschasaux, M, et al. (2017) Plasma vitamin D status and recurrent depressive symptoms in the French SU.VI.MAX cohort. Eur J Nutr 56, 22892298.CrossRefGoogle ScholarPubMed
Lee, S-H, Suh, E, Park, K-C, et al. (2017) Association of serum 25-hydroxyvitamin D and serum total cholesterol with depressive symptoms in Korean adults: the Fifth Korean National Health and Nutrition Examination Survey (KNHANES V, 2010-2012). Public Health Nutr 20, 18361843.CrossRefGoogle ScholarPubMed
Shin, Y-C, Jung, C-H, Kim, H-J, et al. (2016) The associations among vitamin D deficiency, C-reactive protein, and depressive symptoms. J Psychosom Res 90, 98104.CrossRefGoogle ScholarPubMed
Rabenberg, M, Harisch, C, Rieckmann, N, et al. (2016) Association between vitamin D and depressive symptoms varies by season: results from the German Health Interview and Examination Survey for Adults (DEGS1). J Affect Disord 204, 9298.CrossRefGoogle ScholarPubMed
van den Berg, KS, Marijnissen, RM, van den Brink, RHS, et al. (2016) Vitamin D deficiency, depression course and mortality: Longitudinal results from the Netherlands Study on Depression in Older persons (NESDO). J Psychosom Res 83, 5056.CrossRefGoogle Scholar
Song, BM, Kim, HC, Rhee, Y, et al. (2016) Association between serum 25-hydroxyvitamin D concentrations and depressive symptoms in an older Korean population: a cross-sectional study. J Affect Disord 189, 357364.CrossRefGoogle Scholar
Brouwer-Brolsma, EM, Dhonukshe-Rutten, RAM, van Wijngaarden, JP, et al. (2016) Low vitamin D status is associated with more depressive symptoms in Dutch older adults. Eur J Nutr 55, 15251534.CrossRefGoogle ScholarPubMed
Rocha-Lima, MT, Custódio, O, Moreira, PFP, et al. (2016) Depressive symptoms and level of 25-hydroxyvitamin d in free-living oldest old. J Aging Res Clin Pract [cited 2020 Dec 10]; Available from: http://www.jarcp.com/all-issues.html?article=373 Google Scholar
Husemoen, LLN, Ebstrup, JF, Mortensen, EL, et al. (2016) Serum 25-hydroxyvitamin D and self-reported mental health status in adult Danes. Eur J Clin Nutr Nature Publishing Group; 70, 7884.CrossRefGoogle ScholarPubMed
Jääskeläinen, T, Knekt, P, Suvisaari, J, et al. (2015) Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression. Br J Nutr Cambridge University Press; 113, 14181426.CrossRefGoogle ScholarPubMed
Almeida, OP, Hankey, GJ, Yeap, BB, et al. (2015) Vitamin D concentration and its association with past, current and future depression in oldIen: the health in men study. Maturitas 81, 3641.CrossRefGoogle ScholarPubMed
Williams, JA, Sink, KM, Tooze, JA, et al. (2015) Low 25-hydroxyvitamin D concentrations predict incident depression in well-functioning oldIadults: the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci 70, 757763.CrossRefGoogle ScholarPubMed
Imai, CM, Halldorsson, TI, Eiriksdottir, G, et al. (2015) Depression and serum 25-hydroxyvitamin D in older adults living at northern latitudes – AGES-Reykjavik study. J Nutr Sci [cited 2020 Feb 24]; 4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678766/ CrossRefGoogle ScholarPubMed
Józefowicz, O, Rabe-Jabłońska, J, Woźniacka, A, et al. (2014) Analysis of vitamin D status in major depression. J Psychiatr Pract 20, 329337.CrossRefGoogle ScholarPubMed
Toffanello, ED, Sergi, G, Veronese, N, et al. (2014) Serum 25-hydroxyvitamin d and the onset of late-life depressive mood in older men and women: the Pro.V.A. study. J Gerontol A Biol Sci Med Sci 69, 15541561.CrossRefGoogle ScholarPubMed
Milaneschi, Y, Hoogendijk, W, Lips, P, et al. (2014) The association between low vitamin D and depressive disorders. Mol Psychiatry 19, 444451.CrossRefGoogle ScholarPubMed
Lapid, MI, Cha, SS & Takahashi, PY (2013) Vitamin D and depression in geriatric primary care patients. Clin Interv Aging 8, 509514.CrossRefGoogle ScholarPubMed
Jaddou, HY, Batieha, AM, Khader, YS, et al. (2012) Depression is associated with low levels of 25-hydroxyvitamin D among Jordanian adults: results from a national population survey. Eur Arch Psychiatry Clin Neurosci 262, 321327.CrossRefGoogle ScholarPubMed
Chan, R, Chan, D, Woo, J, et al. (2011) Association between serum 25-hydroxyvitamin D and psychological health in older Chinese men in a cohort study. J Affect Disord 130, 251259.CrossRefGoogle ScholarPubMed
Lee, DM, Tajar, A, O’Neill, TW, et al. (2011) Lower vitamin D levels are associated with depression among community-dwelling European men. J Psychopharmacol 25, 13201328.CrossRefGoogle ScholarPubMed
Milaneschi, Y, Shardell, M, Corsi, AM, et al. (2010) Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. J Clin Endocrinol Metab 95, 32253233.CrossRefGoogle ScholarPubMed
Stewart, R & Hirani, V (2010) Relationship between vitamin D levels and depressive symptoms in ouncresidents from a national survey population. Psychosom Med 72, 608.CrossRefGoogle ScholarPubMed
Nanri, A, Mizoue, T, Matsushita, Y, et al. (2009) Association between serum 25-hydroxyvitamin D and depressive symptoms in Japanese: analysis by survey season. Eur J Clin Nutr 63, 14441447.CrossRefGoogle ScholarPubMed
Pan, A, Lu, L, Franco, OH, et al. (2009) Association between depressive symptoms and 25-hydroxyvitamin D in middle-aged and elderly Chinese. J Affect Disord 118, 240243.CrossRefGoogle ScholarPubMed
Hoogendijk, WJG, Lips, P, Dik, MG, et al. (2008) Depression uncassociated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 65, 508512.CrossRefGoogle ScholarPubMed
Wilkins, CH, Sheline, YI, Roe, CM, et al. (2006) Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am J Geriatr Psychiatry 14, 10321040.CrossRefGoogle ScholarPubMed
de Koning, EJ, Elstgeest, LEM, Comijs, HC, et al. (2018) Vitamin D status and depressive symptoms in older adults: a role for physical functioning? Am J Geriatr Psychiatry 26, 11311143.CrossRefGoogle ScholarPubMed
Brouwer-Brolsma, EM, Vaes, AMM, van der Zwaluw, NL, et al. (2016) Relative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in DutcIder adults: the B-PROOF study. J Steroid Biochem Mol Biol 164, 168176.CrossRefGoogle Scholar
Ju, S-Y, Lee, Y-J & Jeong, S-N (2013) Serum 25-hydroxyvitamin D levels and the risk of depression: a systematic review and meta-analysis. J Nutr Health Aging 17, 447455.CrossRefGoogle ScholarPubMed
Li, H, Sun, D, Wang, A, et al. (2019) Serum 25-hydroxyvitamin D levels and depression in older adults: a dose–response meta-analysis of prospective cohort studies. Am J Geriatr Psychiatry 27, 11921202.CrossRefGoogle ScholarPubMed
Sibille, E (2013) Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin Neurosci 15, 5365.CrossRefGoogle ScholarPubMed
Pomatto, LCD & Davies, KJA (2017) The role of declining adaptive homeostasis in ageing. J Physiol 595, 72757309.CrossRefGoogle ScholarPubMed
Soares, CN & Shea, AK (2021) The midlife transition, depression, and its clinical management. Obstetr Gynecol Clin North Am 48, 215229.CrossRefGoogle ScholarPubMed
Brandão, DJ, Fontenelle, LF, da Silva, SA, et al. (2019) Depression and excess mortality in the elderly living in low- and middle-income countries: systematic review and meta-analysis. Int J Geriatr Psychiatry John Wiley & Sons, Ltd; 34, 2230.CrossRefGoogle ScholarPubMed
Lopes, CS, Hellwig, N, e Silva, GA de, et al. (2016) Inequities in access to depression treatment: results of the Brazilian National Health Survey – PNS. Int J Equity Health 15, 154.CrossRefGoogle ScholarPubMed
Falci, DM, Mambrini, JV de, Castro-Costa, É, et al. (2019) Uso de psicofármacos unctionalcapacidade funcional entre idosos. Rev Saúde Pública 53, 21.CrossRefGoogle Scholar
Kim, J & Parish, AL (2017) Polypharmacy and medication management in older adults. Nurs Clin North Am 52: 457468.CrossRefGoogle ScholarPubMed
Read, J, Gee, A, Diggle, J, et al. (2017) The interpersonal adverse effects reported by 1008 users of antidepressants; and the incremental impact of polypharmacy. Psychiatry Res 256, 423427.CrossRefGoogle ScholarPubMed
Parker, GB, Brotchie, H & Graham, RK (2017) Vitamin D and depression. J Affect Disord 208, 5661.CrossRefGoogle ScholarPubMed
Wong, SK, Ima-Nirwana, S & Chin, KY (2018) VitaminInd depression: the evidence from an indirect clue to treatment strategy [Internet]. Curr Drug Targets [cited 2020 Aug 6]. 888–897. Available from: https://www.eurekaselect.com/155568/article Google ScholarPubMed
Jorde, R & Kubiak, J (2018) No improvement in depressive symptoms by vitamin D supplementation: results from a randomised controlled trial. J Nutr Sci 7, e30.CrossRefGoogle ScholarPubMed
Sempos, CT & Binkley, N (2020) 25-Hydroxyvitamin D assay standardisation and vitamin D guidelines paralysis. Public Health Nutr Cambridge University Press; 23, 11531164.CrossRefGoogle ScholarPubMed
Giustina, A, Adler, RA, Binkley, N, et al. (2020) Consensus statement from 2nd International Conference on Controversies in vitamin D. Rev Endocr Metab Disord 21, 89116.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ceolin et al. supplementary material

Ceolin et al. supplementary material

Download Ceolin et al. supplementary material(File)
File 17 KB