1. Introduction
The squirmer model (Lighthill Reference Lighthill1952; Blake Reference Blake1971) has been widely adopted by mathematicians and physicists over the past decades to model ciliated micro-swimmers such as Opalina, Volvox and Paramecium (Lauga & Powers Reference Lauga and Powers2009). On a high level, this continuum model, sometimes referred to as the envelope model, effectively tracks the motion of the envelope formed by the tips of the densely packed cilia, located on the swimmer's body, while neglecting the motion below the tips. Individual and collective ciliary motions could be mapped to travelling waves of the envelope on the surface. Assuming no radial displacements of the surface and a time-independent tangential velocity led to the simpler steady squirmer model (see Pedley Reference Pedley2016), wherein, a prescribed slip velocity on the boundary propels the squirmer. While the model was originally designed for spherical shapes, it has since been adapted to more general shapes and has recently been shown to capture realistic collective behaviour of suspensions (Kyoya et al. Reference Kyoya, Matsunaga, Imai, Omori and Ishikawa2015).
Shape is also a key parameter in the design of artificial micro-swimmers for promising applications such as targeted drug delivery. In particular, the squirmer model is often employed to study the propulsion of phoretic particles, which are micro- to nano-metre sized particles that propel themselves by exploiting the asymmetry of chemical reactions on their surfaces (Anderson Reference Anderson1989; Golestanian, Liverpool & Ajdari Reference Golestanian, Liverpool and Ajdari2007). A classical example is the Janus sphere (Howse et al. Reference Howse, Jones, Ryan, Gough, Vafabakhsh and Golestanian2007), which consists of inert and catalytic hemispheres. When submerged in a suitable chemical solution, the asymmetry between the chemical reactions on the two hemispheres creates a concentration gradient. The gradient creates an effective steady slip velocity on the surface via osmosis that naturally suits the squirmer model. Besides the classical Janus spheres and bi-metallic nanorods (Paxton et al. Reference Paxton, Kistler, Olmeda, Sen, St. Angelo, Cao, Mallouk, Lammert and Crespi2004), more sophisticated shapes have also been proposed recently, such as two spheres (Valadares et al. Reference Valadares, Tao, Zacharia, Kitaev, Galembeck, Kapral and Ozin2010; Palacci et al. Reference Palacci, Sacanna, Abramian, Barral, Hanson, Grosberg, Pine and Chaikin2015), spherocylinder (Uspal et al. Reference Uspal, Popescu, Tasinkevych and Dietrich2018), matchsticks (Morgan et al. Reference Morgan, Dawson, Mckenzie, Skelhon, Beanland, Franks and Bon2014) and microstars (Simmchen et al. Reference Simmchen, Baeza, Miguel-Lopez, Stanton, Vallet-Regi, Ruiz-Molina and Sánchez2017). Interestingly, Uspal et al. (Reference Uspal, Popescu, Tasinkevych and Dietrich2018) showed that special shapes of phoretic particles exhibit novel properties such as ‘edge following’ when placed close to chemically patterned surfaces.
Studying the efficiency of biological micro-swimmers is pivotal to understanding natural systems and designing artificial ones for accomplishing various physical tasks. The mechanical efficiency (Lighthill Reference Lighthill1952) of the spherical squirmer can be directly computed as its rate of viscous energy dissipation, or power loss, can be written in terms of the modes of the squirming motion. Michelin & Lauga (Reference Michelin and Lauga2010) found the optimal swimming strokes of unsteady spherical squirmers by employing a pseudo-spectral method for solving the Stokes equations that govern the ambient fluid and a numerical optimization procedure. Their approach, however, does not readily generalize to arbitrary shapes. On the other hand, Leshansky et al. (Reference Leshansky, Kenneth, Gat and Avron2007) analytically investigated the efficiency of micro-swimmers with prolate spheroid shapes with a time-independent ‘treadmilling’ slip velocity and found that the optimal efficiency increases unboundedly with the aspect ratio. Vilfan (Reference Vilfan2012) optimized the steady slip velocity and the shape at the same time, with constraints on its volume and maximum curvature. The work considered power loss inside the squirmer surface, which could be an order of magnitude higher than the outside power loss (Keller & Wu Reference Keller and Wu1977; Ito, Omori & Ishikawa Reference Ito, roaki, Omori and Ishikawa2019). However, it assumed that the tangential force on the squirmer surface is linear to its local slip velocity, which is not always the case for micro-swimmers.
In this paper, we address the following broader question: Given an axisymmetric shape of a steady squirmer, what is the slip velocity that maximizes its swimming efficiency? The optimization problem, being quadratic, is reduced to a linear system of equations solved by a direct method, while forward exterior flow problems are solved using a boundary integral method. Those combined features produce a simple and efficient solution procedure. We introduce the optimization problem and our numerical solver in § 2, present the optimal solution for various shape families, summarize the correlations between the shapes and the optimal slip velocities and propose a shape-based scalar metric to predict whether the optimized swimmer would be a pusher or a puller in § 3, followed by conclusions and a discussion on future research directions in § 4.
2. Problem formulation and numerical solution
2.1. Model
Consider an axisymmetric micro-swimmer whose boundary $\varGamma$ can be obtained by rotating a curve $\gamma$ about the $\boldsymbol {e}_3$, axis as shown in figure 1(a). Using the arc length $s\in [0,\ell ]$ to parameterize the generating curve, its coordinate functions can be written as $\gamma (s) = (x_1(s), 0, x_3(s))$. Here, we restrict our attention to shapes of spherical topology, therefore, all shapes considered satisfy the conditions $x_1(0) = x_1(\ell ) = 0$ and $x_1(s)>0, \ \forall \, s\in (0,\ell )$. We assume that the micro-swimmer is suspended in an unbounded viscous fluid domain. The governing equations for the ambient fluid in the vanishing Reynolds number limit are given by the Stokes equations
where $\mu$ is the fluid viscosity, $p$ and $\boldsymbol {u}$ are the pressure and flow field respectively. In the absence of external forces and imposed flow fields, the far-field boundary condition simply is
A tangential slip ${u}^{{S}}$ defined on $\gamma$ propels the micro-swimmer forward with a translational velocity $U$ in the $\boldsymbol {e}_3$ direction. Its angular velocity as well as the translational velocities in the $\boldsymbol {e}_1$ and $\boldsymbol {e}_2$ directions are zero by symmetry. Consequently, the boundary condition on $\gamma$ is given by
where $\boldsymbol {\tau }$ is the unit tangent vector on $\gamma$. Note that, in order to avoid singularities, the slip must vanish at the endpoints
Due to the axisymmetry of $\varGamma$, the required no-net-torque condition on the freely suspended micro-swimmer is automatically satisfied while the no-net-force condition reduces to one scalar equation
where $\boldsymbol {f}$ is the active force density on the micro-swimmer surface (negative to fluid traction) and $f_3$ is its $\boldsymbol {e}_3$ component.
We quantify the performance of the micro-swimmer with slip velocity $u^{{S}}$ by its power loss while maintaining a target swimming speed $U$. The power loss is defined by
Note that $P$ can be made arbitrarily small by lowering the swimming speed $U$. It is therefore necessary to compare the power loss of different swimmers that have the same swimming speed $U$. We note that a lower $P$ with a fixed shape and swimming speed $U$ corresponds to a higher efficiency, $\eta = C_DU^{2}/P$, as defined by Lighthill (Reference Lighthill1952), where $C_D$ is the drag coefficient of the given swimmer.
2.2. Boundary integral method for the forward problem
Before stating the optimization problem, we summarize our numerical solution procedure for (2.1a,b)–(2.3). Again, we fix the swimming speed $U$, referred to from here onwards as the ‘target swimming speed’, and assume that the tangential slip $u^{S}$ is given. In general, an arbitrary pair of ${u}^{{S}}$ and $U$ does not satisfy the no-net-force condition (2.5). This condition will be treated as a constraint in our optimization problem. Therefore, the goal is to find the active force density $\boldsymbol {f}$ given the velocity on the boundary $\gamma$ as in (2.3). We use the single-layer potential ansatz (Pozrikidis Reference Pozrikidis1992), which expresses the velocity as a convolution of an unknown density function $\boldsymbol {\mu }$ with the Green's function for the Stokes equations $G$, from which the force density can be determined by convolution with the traction kernel $T$
where $\boldsymbol {n}$ is the unit normal vector pointing into the fluid. We can solve for $\boldsymbol {\mu }$ by taking the limit of $\boldsymbol {x} \rightarrow \varGamma$ in the above ansatz and substituting in (2.3). The boundary integrals in (2.7a,b) become weakly singular on $\varGamma$, requiring specialized quadrature rules. Here, we use the approach of Veerapaneni et al. (Reference Veerapaneni, Gueyffier, Biros and Zorin2009), which performs an analytic integration in the $\theta -$direction reducing the integrals to convolutions on the generating curve and applies a high-order quadrature rule designed to handle the log-singularity of the resulting kernels. More details on the numerical scheme are provided in appendix B.
2.3. Optimization problem and its reformulation
The goal is to find a slip profile $u^{{S}*}(s)$ that minimizes the power loss $P$ while maintaining the target swimming speed $U$ of a given axisymmetric micro-swimmer. Let ${J}$ be the objective function, here equated to $P$ defined in (2.6), and ${F}$ be the net force functional
They are slip velocity functionals as their values are completely determined by $u^{{S}}$. The optimization problem can now be stated as follows:
with $\mathcal {U}$ being the space of the all possible slip velocities satisfying (2.4). Notice that the no-net-force condition (2.5) is added as a constraint here.
By (2.3) and linearity of the Stokes equation (2.1a,b), the forward solution $\boldsymbol {u}$ and the net force ${F}$ are affine in $u^{{S}}$ ($\boldsymbol {u}$ is linear in $u^{{S}}$ if $F=0$). Consequently, ${J}(u^{{S}})$ is a quadratic functional and (2.9) is inherently a quadratic optimization problem. To make it more explicit, consider a discretized version of the slip optimization problem where $u^{{S}}$ is sought in the form
for some set of $m$ basis functions $u^{{S}}_k$ satisfying (2.4). We adopt a B-spline formulation for these basis functions (see appendix A for more details). Let $(\boldsymbol {u}_0,p_0,\boldsymbol {f}_0)$ and $(\boldsymbol {u}_k,p_k,\boldsymbol {f}_k)$ (with $1\le k\le m$) denote the solutions of the forward problem (2.1a,b) with $\boldsymbol {u}=\boldsymbol {e}_3$ and $\boldsymbol {u}=u_k^{{S}}\boldsymbol {\tau }$ being their boundary conditions on $\gamma$, respectively.
The net force ${F}(u^{{S}})$ is then given by ${F}(u^{{S}})= 2{\rm \pi} U\mathcal {F}(\boldsymbol \xi )$, where
Here, $\boldsymbol {\xi }=(\xi _1,\ldots ,\xi _m)^{\mathrm {T}}$, $\boldsymbol {F} = (F_1,\ldots ,F_m)^{\mathrm {T}}$ and $F_k = \int _\gamma \boldsymbol {f}_k \boldsymbol {\cdot } \boldsymbol {e}_3\, x_1\, \mathrm {d}s$ for $k=0,1,\ldots ,m$.
Similarly, we have ${J}(u^{{S}}) = 2{\rm \pi} U^{2}\mathcal {J}(\boldsymbol \xi )$, where
The elements of the $m\times m$ matrix $\boldsymbol {A}$ are given by $A_{kj} = \int _\gamma \boldsymbol {f}_k \boldsymbol {\cdot } u^{{S}}_j \boldsymbol \tau \, x_1 \mathrm {d}s$. We have used the fact that $\int _\gamma \boldsymbol {f}_0 \boldsymbol {\cdot } u^{{S}}_k \boldsymbol \tau \, x_1 \mathrm {d}s = \int _\gamma \boldsymbol {f}_k \boldsymbol {\cdot } \boldsymbol {e}_3\, x_1 \mathrm {d}s$ for the linear term by the reciprocal theorem (Happel & Brenner Reference Happel and Brenner1973). We note that $\boldsymbol {A}$ is symmetric, also by the reciprocal theorem. Physically speaking, $\boldsymbol \xi ^{\mathrm {T}}\boldsymbol {A}\boldsymbol \xi$ represents the scaled power loss of the swimmer being held still with its slip velocity parametrized by $\boldsymbol \xi$, implying that $\boldsymbol {A}$ is positive–definite; $\boldsymbol {\xi }^{T} \boldsymbol {F}$ is the scaled power loss of the active force along the swimming direction; $F_0$ is the scaled power loss of towing a rigid body with the same shape as the micro-swimmer at unit speed.
Now, the discretized optimization problem becomes
Introducing the Lagrangian $L(\boldsymbol {\xi },\lambda ):= \mathcal {J}(\boldsymbol {\xi })-2\lambda \mathcal {F}(\boldsymbol {\xi })$, the slip optimization problem is reduced to solving the first-order stationarity equations for $L$ given by
Note that forming the matrix requires $(m+1)$ solves of the forward problem (2.1a,b) with appropriate boundary conditions. Since the micro-swimmer is assumed to be rigid, the single-layer potential operator as well as the traction operator, required for forming $\boldsymbol {A}$ and $\boldsymbol {F}$, are both fixed for a given shape. Therefore, we only need to form them once.
3. Results
We tested the convergence of our numerical solvers rigorously; the boundary discretization for all the numerical examples presented here is chosen so that at least 6-digit solution accuracy is attained (determined via self-convergence tests). The optimal slip velocity for a particular prolate spheroid tested against the (truncated) analytical solution given by Leshansky et al. (Reference Leshansky, Kenneth, Gat and Avron2007) is shown in figure 2. Our numerical solution is indistinguishable against the analytical solution at their finer truncation level $L=10$. Additional validation results can be found in appendix B.
Here, we focus on analysis of the optimal solutions for various micro-swimmer shape families. Let $V$ be the volume enclosed by the swimmer. We normalize lengths by the radius of a sphere of equivalent volume i.e. by $R=(3V/4{\rm \pi} )^{1/3}$, and velocities by the swimming speed $U$. A simple calculation shows that, for a micro-swimmer submerged in water of size $R=5\ \mathrm {\mu }\text {m}$ and the speed of one body length per second, the Reynolds number $(Re) \approx 5\times 10^{-5}$; thereby, confirming the validity of the Stokes equation (2.1a,b). We will use the dimensionless reduced volume, defined by $\nu = 6\sqrt {{\rm \pi} }V/A^{3/2}$ where $A$ is the surface area of the given shape, to characterize each shape family. The largest possible value of $\nu$, attained by spheres, is $\nu =1$, while for example $\nu$ decreases monotonically for spheroids as the aspect ratio is increased.
We first consider six different micro-swimmer shapes and plot their optimal slip profiles obtained by solving (2.14) in figure 3. In each case, we also show the flow fields in both the body and laboratory frames. The optimal slip velocities plotted against the arc length, measured from north pole to south pole, are shown in the insets. In the case of a sphere (figure 3a), we recover the standard result that the optimal profile is a sine curve (Michelin & Lauga Reference Michelin and Lauga2010). The optimal slip velocity of the prolate swimmer, shown in figure 3(b), ‘flattens’ the sine curve in the middle while that of the oblate swimmer, shown in figure 3(c), ‘pinches’ the sine curve. Additionally, the peak value of the optimal slip velocity is low for the prolate swimmer, and high for the oblate swimmer, compared to the spherical swimmer.
Next, we consider three shapes corresponding to different shape families. In figure 3(d), we consider the ‘wavy’ configuration obtained by adding high-order axisymmetric modes to the spherical shape. The optimal slip velocity follows the general trend for that of figure 3(a), while lower slip velocities are observed at the troughs, qualitatively consistent to those obtained in Vilfan (Reference Vilfan2012). The spherocylinder (figure 3e) resembles closely the prolate spheroid of figure 3(b) with the same aspect ratio, its optimal slip velocity being nearly the same (albeit with a slightly narrower plateau and higher peak slip velocity). Finally, we investigate the optimal slip velocity of the stomatocyte shape (figure 3f), which is the only non-convex shape among those considered here. Similar to that of the oblate swimmer, the general slip velocity is like a pinched sine wave. However, one distinguishing feature is that slip velocity is nearly zero over part of its surface, namely the cup-like region in its posterior.
The optimal slip velocity strongly depends on the local geometry of the micro-swimmer. Generally speaking, the optimal slip velocity is high if the material point is far away from the axis of symmetry. This could be seen most clearly in the cases of spheroids, see figure 3(a–c). Specifically, the peak value of the optimal slip velocity is the highest for the oblate spheroid and lowest for the prolate spheroid among the three. Intuitively, an object that has a larger radius would endure a higher fluid drag compare to one with a smaller radius when moving in the same speed. Thus extra effort, in the form of a slip velocity, would need to be put in to balance the drag. Additionally, the slip velocity is high when the orientation of the generating curve aligns with the swimming direction (axis of symmetry), and low otherwise. This is understandable as the slip velocity is constructed to be tangential to the generating curve, and a slip velocity perpendicular to the swimming direction generates little swimming velocity at the cost of additional power loss. This could be seen most clearly in the wavy shape of figure 3(d). Specifically, comparing the two points A and B marked in the panel, although point B has a larger radius than point A, the slip velocity of point B is lower because the orientation of the generating curve is almost perpendicular to the swimming direction.
Additionally, we note that the optimal slip velocity is proportional to the target swimming speed $U$ due to linearity of the Stokes equations. As a consequence, while the results only showcase micro-swimmers propelling themselves in the positive $\boldsymbol {e}_3$ direction, the optimal solution $u^{{S}*}$ for swimming in the opposite direction is merely a change of sign.
Micro-swimmers can be loosely classified as pushers that repel fluid from the body along the axis of symmetry, pullers that draw fluid to the body along the axis of symmetry or neutral swimmers that do not repel or draw fluid along the axis of symmetry (Lauga & Powers Reference Lauga and Powers2009). At first sight, the flow fields for all optimal swimmers studied here seem to be neutral swimmers. A closer look into the stresslet tensor $\boldsymbol {S}$, however, reveals a more interesting story. For an axisymmetric swimmer whose swimming direction is $\boldsymbol {e}_3$, the stresslet tensor could be simplified to $\boldsymbol {S} = S(\boldsymbol {e}_3\boldsymbol {e}_3 - \boldsymbol {I}/3)$, where $\boldsymbol {I}$ is the identity matrix. The sign of $S$ characterizes whether the swimmer is a pusher ($S<0$) or a puller ($S>0$).
It is easy to prove by contradiction that the optimal ‘front–back symmetric’ swimmers cannot be pushers nor pullers: flipping the direction of the slip velocity would make a pusher into a puller of the same shape with an equal (minimal) power loss, contradicting the unique solution guaranteed by the quadratic nature of the problem. However, the contradiction does not apply for ‘front–back asymmetric’ swimmers as flipping the swimming direction would essentially change the shape of the swimmer. In fact, the optimal ‘front–back asymmetric’ swimmers are not always neutral. For example, the stomatocyte shown in figure 3(f) is a puller where the stagnation point in the laboratory frame's flow field is in front of the micro-swimmer.
Conventionally, pusher and puller particles have been associated with ‘tail-actuated’ swimmers (e.g. spermatozoa) and ‘head-actuated’ swimmers (e.g. Chlamydomonas reinhardtii) respectively (Saintillan & Shelley Reference Saintillan and Shelley2015). It is, however, not immediately clear whether a micro-swimmer should be a pusher (tail actuated) or a puller (head actuated) to optimize its efficiency when given an arbitrary shape. Here, capitalizing on our earlier observation on the dependence of local geometry and optimal slip velocity, we propose a shape-based scalar metric $\mathbb {A}$ that can be used to predict whether the optimal swimmer for a given shape is a pusher or puller without the need of optimization. Simply speaking, $\mathbb {A}$ quantifies the relative ‘nominal actuation’ of the ‘head’ part and the ‘tail’ part of the swimmer based solely on the swimmer shape
where the generating curve $\gamma$ is divided into two curves $\gamma = \gamma _h \cup \gamma _t$; $\gamma _h$ represents the generating curve of the head part and $\gamma _t$ represents the generating curve of the tail part. The numerator and denominator inside the logarithm function are the surface averages of the nominal actuation for the head and tail parts, respectively. The nominal actuation is stronger if the generating curve aligns with the swimming direction better (larger $\boldsymbol \tau \boldsymbol {\cdot }\boldsymbol {e}_3$), or if the material point is farther away from the axis of symmetry (larger $x_1$). For front–back symmetric shapes, we naturally divide $\gamma$ in the middle thus $\mathbb {A}\equiv 0$; for front–back asymmetric shapes, we divide $\gamma$ at the arc length where $x_1$ is the largest along the generating curve $s^{*}={\textrm {arg\,max}}_{s\in \gamma } x_1(s)$, or the average $s^{*}$ if ${\textrm {arg\,max}}$ returns more than one $s^{*}$. Positive $\mathbb {A}$ corresponds to a shape whose head part actuates stronger than its tail part, which indicates that the micro-swimmer is likely to be a puller; similarly negative $\mathbb {A}$ indicates that the micro-swimmer is likely to be a pusher.
The predictions based on $\mathbb {A}$ for various families of asymmetric shapes are shown in figure 4. Specifically, most of the shapes are correctly predicted as they lie in the first and the third quadrants; the ones that are misclassified, on the other hand, have close to zero $\mathbb {A}$ and $S$, which means the head and tail are similarly actuated and the optimal swimmers are close to neutral.
Next, we study the optimal active force density $\boldsymbol {f}$ corresponding to the same shapes. Its normal and tangential components are plotted in figure 5. We note that by the no-net-force condition (2.5), the power loss reduces to $P= 2{\rm \pi} \int _\gamma \boldsymbol {f}\boldsymbol {\cdot }({u}^{{S}}\boldsymbol \tau ) x_1\,\mathrm {d}s,$ implying that only the tangential component contributes to the power loss. The change in tangential forces as a function of arc length loosely resembles that of the optimal slip velocity, mediated by the local curvature of the generating curve. Qualitatively, a low local curvature suppresses the traction relative to the slip velocity, and a high local curvature amplifies it. Slip velocities scaled by their local curvatures are shown in black dotted curves for a reference.
In figure 6, we plot the minimal power loss as a function of the reduced volume for various shape families. The power loss is scaled by the minimal power loss of a spherical swimmer with the same volume $J_o = 12{\rm \pi} \mu RU^{2}$ with $R = (3V/4{\rm \pi} )^{1/3}$. The minimal power loss for prolate spheroids monotonically decreases as the shape gets more slender; in contrast, it is well known that the shape with the minimal fluid drag is one with approximately $2\,{:}\,1$ aspect ratio (Pironneau Reference Pironneau1973). By slender body theory, the power loss of a prolate spheroid scales as $\sim \mu \alpha ^{2/3} U^{2}$, where $\alpha$ is the aspect ratio (see Leshansky et al. Reference Leshansky, Kenneth, Gat and Avron2007). On the other hand, the minimal power loss for oblate spheroids grows rapidly as the reduced volume is increased. Shapes of the spherocylinder family behave similarly to the prolate spheroids, and converge to the spherical case when the length of the cylinder reduces to 0, as expected. It is, however, worth pointing out that spherocylinder costs more power loss than prolate spheroids with the same reduced volume; this relates to the fact that the peak slip velocity for spherocylinder is higher than that of the prolate spheroids (figure 3b,e). The stomatocyte family is constructed by ‘pulling’ the rim of the shape, effectively making the shape ‘taller’ and curls deeper and deeper inside. We find that ‘taller’ shapes require lower power loss for this shape family, which is qualitatively consistent with the spheroid family. Finally, we note that the power loss of the snowman family (two spheres attaching with each other) is quite robust to the relative sizes of the two spheres. The power loss is only approximately $25\,\%$ higher than that of a single sphere in the limit case where the two spheres are of the same size.
A few other examples that take more generic shapes are also shown in figure 6. The optimal slip velocities are coloured on their surfaces while their power loss is shown in the form of scatter points. The generating curves of these shapes are formed by spherical harmonics. We note that the optimal performance of shapes that appear similar can be very different. For example, the difference in power loss between examples 6 and 8 is approximately $150\,\%$ of the spherical swimmer, or $60\,\%$ of example 6. This result is a strong indicator that the slip velocity of the artificial swimmer, as well as its shape, must be carefully designed to achieve good performance.
We note that the minimal power loss for all the shape families considered here are bounded from below by the curve for prolate spheroids. However, since the current work does not optimize shape, whether the prolate spheroids are universally optimal remains to be tested.
4. Conclusions
In this work, we provided a solution procedure for the PDE-constrained optimization problem of finding the optimal slip profile on an axisymmetric micro-swimmer that minimizes the power loss required to maintain a target swimming speed. While it can be extended to other objective functions, we exploited the quadratic nature of the power loss functional in the control parameters to simplify and streamline the solution procedure. In the general case, an adjoint formulation and iterative optimization algorithms can be employed. Regardless of the formulation, however, the use of the boundary integral method to solve the Stokes equations greatly reduces the computational cost due to dimensionality reduction. Solving any of the examples presented in this work, for example, required only a few seconds on a standard laptop. Extending our procedure to fully three-dimensional (non-axisymmetric) shapes is straightforward; the key technical challenge is incorporating a high-order boundary integral solver, for which open-source codes are now available (e.g. see Gimbutas & Veerapaneni Reference Gimbutas and Veerapaneni2013).
Based on our numerical results, we came up with a heuristic metric that can classify the optimal swimming pattern for a given shape. It measures relative actuation of the ‘head’ and the ‘tail’ of the swimmer and predicts whether the optimal swimmer is head actuated (puller) or tail actuated (pusher). This metric could inform the early design of optimal slip for a given shape without the need for carrying out numerical optimization.
The optimization procedure developed in this work can directly be employed in the design pipeline of autophoretic particles. For example, in the case of diffusiophoresis, the computed optimal slip profile for a given shape can be used to formulate the chemical coating pattern of the phoretic particles. We acknowledge that the cost function for such optimization may need to be modified accordingly to reflect the chemical nature of the problem (Sabass & Seifert Reference Sabass and Seifert2012). Another natural extension of this work is to relax the steady slip assumption and consider time-periodic squirming motion as done in Michelin & Lauga (Reference Michelin and Lauga2010). This would be particularly useful for studying the ciliary locomotion of micro-organisms with arbitrary shapes. Furthermore, building on the recent work of Bonnet, Liu & Veerapaneni (Reference Bonnet, Liu and Veerapaneni2020), we are developing solvers for the shape optimization problem of finding the most efficient micro-swimmer shapes under specified area, volume or other physical constraints.
Acknowledgements
The authors gratefully acknowledge support from NSF under grants DMS-1719834 and DMS-1454010. The authors appreciate the constructive suggestions provided by the anonymous referees, which helped them to improve the paper.
Declaration of interests
The authors report no conflict of interest.
Appendix A. Parameter space
We parametrize the slip velocity using a piecewise B-spline approximation. The slip velocity $u^{{S}}(t)$ is determined by $(M+1)$ control points, $u^{{S}}(t_i) = \varphi _i$ for $i = 0,\ldots ,M$, and is interpolated by B-spline basis functions between the control points. Here, $t\in [0,{\rm \pi} ]$ is a reparameterization of the arc length $s$. In theory, we only need to assign control points for $t_i$ between $0$ and ${\rm \pi}$ to generate an admissible slip velocity by symmetry. In practice, however, we assign control points in the full period $t_i\in [0,2{\rm \pi} ]$ and impose periodic boundary conditions to determine the spline coefficients, as detailed below.
Let $M=2N+2$, where $N$ is the number of free control points between $0$ and ${\rm \pi}$. Let all control points be equally spaced, we have $t_i = 2{\rm \pi} i/M$, $i = 0,\ldots ,M$. To make sure the slip velocity is axisymmetric, we assign ghost control points $\varphi _i= -\varphi _{M-i}$ for $N+1<i<2N+2$ and enforce zero conditions at the poles $\varphi _i = 0$, for $i = 0,N+1,2N+2$.
The general B-spline formulation of order 5 is given by
where $B_k(t) = B^{*}_{k,5}(({M}/{2{\rm \pi} })t)$ is a modified $k$th B-spline basis function, and $B^{*}_{k,p}$ is the standard $k$th B-spline basis function of degree $p$, given by recurrence
In order to obtain the $(M+5)$ B-spline coefficients $\xi _k$ from the $(M+1)$ control points $\varphi _i$, we need four more equations to close the system. Specifically, we use the periodic boundary conditions of the derivatives
This system of equations uniquely determines the B-spline coefficient $\xi _k$ from the control points $\varphi _i$. The slip velocity $u^{S}(t)$ along the generating curve could then be found by substituting $\xi _k$ into (A 1).
Appendix B. Numerical validation
The Green's function $G$ and the traction kernel $T$ used in the ansatz (2.7a,b) are defined by
Due to the rotational symmetry of $\varGamma$, we can transform the layer potentials (2.7a,b) into convolutions on the generating curve $\gamma$ by integrating analytically in the $\theta$-direction. The integral kernels take the following form (Veerapaneni et al. Reference Veerapaneni, Gueyffier, Biros and Zorin2009):
The velocity and traction can therefore be transformed as $\boldsymbol {u}(\boldsymbol {x})=\int _{\gamma }G_\gamma (\boldsymbol {x},\boldsymbol {y})\boldsymbol {\mu }(\boldsymbol {y})y_1\,\textrm {d}s$, $\boldsymbol {f}(\boldsymbol {x})=-(\boldsymbol {\mu }(\boldsymbol {x})/2)+\boldsymbol {n}(\boldsymbol {x})\int _{\gamma }T_\gamma (\boldsymbol {x},\boldsymbol {y})\boldsymbol {\mu }(\boldsymbol {y})y_1\,\textrm {d}s$. The analytic solution of the integrals (B 3) can be found in Veerapaneni et al. (Reference Veerapaneni, Gueyffier, Biros and Zorin2009) and Pozrikidis (Reference Pozrikidis1992, p. 40).
To validate our boundary integral method, we construct a boundary value problem and test the algorithm against the exact solution. As is standard practice, we consider the flow field generated by a set of axisymmetric Stokeslets and the corresponding traction
where $\{\boldsymbol {y}_k\}$ and $\{\boldsymbol {\tau }_k\}$ are the location and strength of the $k$th Stokeslet. We randomly choose $5$ Stokeslets whose locations and strengths are given in figure 7(a) by the black arrows and substitute them into (B 4a,b) as our reference case.
To obtain the numerical solution, we first evaluate the reference flow field on the generating curve $\boldsymbol {u}_{exa}(\gamma )$, then treat $\boldsymbol {u}_{exa}(\gamma )$ as the boundary condition to obtain the density vector $\boldsymbol \mu$. The generating curve $\gamma$ is discretized into non-overlapping panels $\gamma = \sum _{p=1}^{N_p}\varLambda _p$. Then, on each panel, we place the nodes of a $10$-point Gaussian quadrature. The integral operator can then be approximated by the standard Nyström matrix at these collocation points. The logarithmic singularity is resolved with Alpert quadrature using node locations off the Gauss–Legendre grid (Hao et al. Reference Hao, Barnett, Martinsson and Young2014), as illustrated in figure 8(a,b). Integrals of $G_\gamma (\boldsymbol {x},\boldsymbol {y})$ and $T_\gamma (\boldsymbol {x},\boldsymbol {y})$ at the desired target, the endpoints of the two panels in figure 8(b), are approximated using correction nodes. Note that two end panels need to be further split adaptively corresponding to north and south poles, until the first and last Gaussian nodes have adjacent neighbours. We subsequently use the density vector $\boldsymbol \mu$ to evaluate the numerical solution $\boldsymbol {u}_{num}(\boldsymbol {x})$ outside the micro-swimmer's surface. The traction on the generating curve is evaluated from the same density vector $\boldsymbol \mu$ using the traction kernel $\boldsymbol {f}_{num}(\gamma )=-(\boldsymbol {\mu }(\gamma )/2)+ \boldsymbol {n}(\gamma )\int _{\gamma } T_\gamma (\gamma , \boldsymbol {y})\boldsymbol {\mu }(\boldsymbol {y})y_1\,\textrm {d}s$.
The absolute error of the numerical solution $\boldsymbol {u}_{num}$ for this example is shown in figure 7(a). As can be observed from figure 7(b,c), our forward solver achieves 10-digit accuracy in the flow field and 6-digit accuracy for traction with 400 quadrature points on the generating curve. For all the test cases presented in § 3, 600 Gauss–Legendre quadrature points were used.
As a further validation of our numerical scheme, we computed the fluid drag of a family of prolate and oblate spheroids. The shape that yields the minimal fluid drag is a prolate spheroid with a roughly $2\,{:}\,1$ aspect ratio (figure 9), consistent with the optimal shape obtained previously in Pironneau (Reference Pironneau1973).
Appendix C. Generating curves of the shapes used in the paper
Here, for reproducibility purposes, we list equations of all the generating curves used in this paper. In all cases below, $i=\sqrt {-1}$, $t\in [0,{\rm \pi} ]$ is the polar angle, the equations are defined on the complex plane and the axis of symmetry is the imaginary axis.
(i) Spheroids: $z = \alpha ^{-1/3} \sin (t) + \textrm {i} \alpha ^{2/3}\cos (t)$, $\alpha$ is the aspect ratio.
(ii) Wavy shapes: $z = (1+0.15\cos (kt) \exp (\textrm {i} ({\rm \pi} /2-t)))$, $k\in \{3,4,5,6\}$ is the order of the perturbation.
(iii) Stomatocyte: $z = (1.5+\cos t)(\sin (\lambda {\rm \pi}\sin t) + \textrm {i}\cos (\lambda {\rm \pi}\sin t)) - 0.5\textrm {i}$, $\lambda \in [0.4, 0.95]$ controls the vertical ‘stretchiness’ of the shape.
(iv) Harmonics: $z = \rho (t) \sin t - \textrm {i}\rho (t) \cos t$, where $\rho (t) = 1+ r Y_n^{m}(t,0)$, where $Y_n^{m}(\theta , \varphi )$ is the spherical harmonic of degree $n$ and order $m$, evaluated at the colatitude $\theta$ and longitude $\varphi$.
(v) Spherocylinder shapes were generated by simply attaching semi-spherical caps to a cylinder with the same radius and subsequently smoothing using B-splines up to order 5.
(vi) Snowman shapes were generated by two spheres of different radii glued together with the centroid distance set to $90\,\%$ of the sum of the radii, followed by smoothing.