Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T06:32:11.855Z Has data issue: false hasContentIssue false

Introduction - Porous Metals: From Nano to Macro

Published online by Cambridge University Press:  14 October 2020

Nihad Dukhan
Affiliation:
University of Detroit Mercy, USA
Yu-chen Karen Chen-Wiegart
Affiliation:
Stony Brook University, Brookhaven National Laboratory, USA
Ashley Paz y Puente
Affiliation:
University of Cincinnati, USA
Dinc Erdeniz
Affiliation:
Marquette University, USA
David C. Dunand
Affiliation:
Northwestern University, USA
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Introduction
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This special issue of the Journal of Materials Research contains articles that were accepted in response to an invitation for manuscripts.

References

Sing, S.L., An, J., Yeong, W.Y. and Wiria, F.E.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs J. Orthop. Res. 34(3), 369 (2016).Google ScholarPubMed
Shirazi, S.F.S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaar, H.S.C., Kadri, N.A. and Abu Osman, N.A.: A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing Sci Technol Adv Mat. 16(3), 20 (2015).10.1088/1468-6996/16/3/033502CrossRefGoogle ScholarPubMed
Maconachie, T., Leary, M., Lozanovski, B., Zhang, X.Z., Qian, M., Faruque, O. and Brandt, M.: SLM lattice structures: Properties, performance, applications and challenges Materials & Design. 183, 18 (2019).CrossRefGoogle Scholar
Zou, L.J., Ge, M.Y., Zhao, C.H., Meng, Q.K., Wang, H., Liu, X.Y., Lin, C.H., Xiao, X.H., Lee, W.K., Shen, Q., Chen, F. and Chen-Wiegart, Y.C.K.: Designing Multiscale Porous Metal by Simple Dealloying with 3D Morphological Evolution Mechanism Revealed via X-ray Nano-tomography ACS Appl. Mater. Interfaces. 12(2), 2793 (2020).10.1021/acsami.9b16392CrossRefGoogle ScholarPubMed
Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams Prog. Mater. Sci. 46(6), 559 (2001).CrossRefGoogle Scholar
Banhart, J.: Metal foams: Production and stability Advanced Engineering Materials. 8(9), 781 (2006).CrossRefGoogle Scholar
Banhart, J.: Metal foams-from fundamental research to applications Frontiers in the Design of Materials. 279 (2007).Google Scholar
Banhart, J.: Light-Metal Foams - History of Innovation and Technological Challenges Advanced Engineering Materials. 15(3), 82 (2013).CrossRefGoogle Scholar
Lefebvre, L.P., Banhart, J. and Dunand, D.C.: Porous Metals and Metallic Foams: Current Status and Recent Developments Advanced Engineering Materials. 10(9), 775 (2008).CrossRefGoogle Scholar
Zhao, B., Gain, A.K., Ding, W.F., Zhang, L.C., Li, X.Y. and Fu, Y.C.: A review on metallic porous materials: pore formation, mechanical properties, and their applications Int. J. Adv. Manuf. Technol. 95(5-8), 2641 (2018).CrossRefGoogle Scholar
Banhart, J. and Seeliger, H.W.: Recent Trends in Aluminum Foam Sandwich Technology Advanced Engineering Materials. 14(12), 1082 (2012).CrossRefGoogle Scholar
Banhart, J. and Seeliger, H.W.: Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications Advanced Engineering Materials. 10(9), 793 (2008).Google Scholar
Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R.: Steel foam for structures: A review of applications, manufacturing and material properties J. Constr. Steel. Res. 71, 1 (2012).CrossRefGoogle Scholar
Dunand, D.C.: Processing of titanium foams Advanced Engineering Materials. 6(6), 369 (2004).CrossRefGoogle Scholar
Singh, R., Lee, P.D., Dashwood, R.J. and Lindley, T.C.: Titanium foams for biomedical applications: a review Mater. Technol. 25(3-4), 127 (2010).CrossRefGoogle Scholar
Bansiddhi, A., Sargeant, T.D., Stupp, S.I. and Dunand, D.C.: Porous NiTi for bone implants: A review Acta Biomaterialia. 4(4), 773 (2008).Google ScholarPubMed
Palka, K. and Pokrowiecki, R.: Porous Titanium Implants: A Review Advanced Engineering Materials. 20(5), 18 (2018).CrossRefGoogle Scholar
Wan, T., Liu, Y., Zhou, C., Chen, X. and Li, Y.: Fabrication, properties, and applications of open-cell aluminum foams: A review Journal of Materials Science & Technology. (2020).Google Scholar
Yu, L., Peel, G.K., Cheema, F.H., Lawrence, W.S., Bukreyeva, N., Jinks, C.W., Peel, J.E., Peterson, J.W., Paessler, S. and Hourani, M.: Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system Materials Today Physics. 100249 (2020).CrossRefGoogle Scholar
Bhattacharyya, D., Detisch, M., Balk, T. and Bezold, M.: Nanoporous Metal-Polymer Composite Membranes for Organics Separations and Catalysis J. Mater. Res. 35(19), (2020).Google Scholar
Gao, Y., Ma, H., Zhao, B., Ding, K., Zhang, Y. and Wu, G.: Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25 ribbons J. Mater. Res. 35(19), (2020).Google Scholar
Abdolrahim, N., He, L., Hadi, M. and Liu, H.: Mechanism of Coarsening and Deformation Behavior of Nanoporous Cu with Varying Relative Density J. Mater. Res. 35(19), (2020).Google Scholar
Ji, Z., Chen, M., Liu, B., Jia, C., Wu, Q. and Liu, Z.: Mechanical Properties and Damping Properties of Carbon Nanotubes Reinforced Foam Aluminum with Small Aperture J. Mater. Res. 35(19), (2020).Google Scholar
Schmalbach, K., Wang, Z., Penn, L., Poerschke, D., Antoniou, A., Stein, A. and Mara, N.: Temperature-Dependent Mechanical Behavior of 3-Dimensionally Ordered Macroporous Tungsten J. Mater. Res. 35(19), (2020).Google Scholar
Lloreda-Jurado, P., Wilke, S., Scotti, K., Paúl-Escolano, A., Dunand, D. and Sepúlveda, R.: Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment J. Mater. Res., 1 (2020).Google Scholar
Kelly, C., Pham, A. and Gall, K.: Free boundary effects and representative volume elements in 3D printed Ti-6Al-4V macroporous gyroid scaffolds J. Mater. Res. 35(19), (2020).Google Scholar
Nakajima, H.: Open-channel metals fabricated by removal of template wires J. Mater. Res. 35(19), (2020).CrossRefGoogle Scholar
Nakajima, H.: Through Hole Aluminum Fabricated by the Extraction of Lubricated Metallic Wires Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science. 50(12), 5707 (2019).CrossRefGoogle Scholar
Xin, D., Zhao, Y., Ma, C. and Sun, M.: Dynamic mechanical properties of closed-cell aluminium foams with uniform and graded densities J. Mater. Res. 35(19), (2020).Google Scholar
Zhang, F., Saba, F., Garmroudi-Nezhad, E. and Wang, L.: Fabrication, mechanical property and in vitro bioactivity of hierarchical macro/micro/nano-porous titanium and titanium molybdenum alloys J. Mater. Res. 35(19), (2020).Google Scholar
Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Luther, E.P., Mang, J.T. and Son, S.F.: Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition Journal of the American Chemical Society. 128(20), 6589 (2006).CrossRefGoogle ScholarPubMed
Zheng, X.Y., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X. and Spadaccini, C.M.: Ultralight, Ultrastiff Mechanical Metamaterials Science. 344(6190), 1373 (2014).CrossRefGoogle ScholarPubMed
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L. and Carter, W.B.: Ultralight Metallic Microlattices Science. 334(6058), 962 (2011).CrossRefGoogle ScholarPubMed
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N. and Sieradzki, K.: Evolution of nanoporosity in dealloying Nature. 410(6827), 450 (2001).CrossRefGoogle ScholarPubMed
McCue, I., Benn, E., Gaskey, B. and Erlebacher, J.: Dealloying and Dealloyed Materials, in Annual Review of Materials Research, Vol 46, edited by Clarke, D. R. (Annual Reviews, City, 2016), pp. 263.Google Scholar
Weissmuller, J., Newman, R.C., Jin, H.J., Hodge, A.M. and Kysar, J.W.: Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties Mrs Bulletin. 34(8), 577 (2009).CrossRefGoogle Scholar
Zhu, C., Qi, Z., Beck, V.A., Luneau, M., Lattimer, J., Chen, W., Worsley, M.A., Ye, J.C., Duoss, E.B., Spadaccini, C.M., Friend, C.M. and Biener, J.: Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing Science Advances. 4(8), (2018).Google ScholarPubMed
Zhang, Y.Z., Sun, X.H., Nomura, N. and Fujita, T.: Hierarchical Nanoporous Copper Architectures via 3D Printing Technique for Highly Efficient Catalysts Small. 15(22), 7 (2019).Google ScholarPubMed
Mooraj, S., Welborn, S.S., Jiang, S.Y., Peng, S.Y., Fu, J.T., Baker, S., Duoss, E.B., Zhu, C., Detsi, E. and Chen, W.: Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying Scripta Materialia. 177, 146 (2020).CrossRefGoogle Scholar
Zou, L., Ge, M., Bai, J., Zhao, C., Wang, H., Xiao, X., Zhong, H., Ghose, S.K., Lee, W.-K. and Shen, Q.: 3D Morphology of Bimodal Porous Copper with Nano-Sized and Micron-Sized Pores to Enhance Transport Properties for Functional Applications ACS Applied Nano Materials. (2020).Google Scholar
Juarez, T., Biener, J., Weissmuller, J. and Hodge, A.M.: Nanoporous Metals with Structural Hierarchy: A Review Advanced Engineering Materials. 19(12), (2017).CrossRefGoogle Scholar
Zhang, J.T. and Li, C.M.: Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems Chemical Society Reviews. 41(21), 7016 (2012).CrossRefGoogle ScholarPubMed
Li, Z.D., Polat, O. and Seker, E.: Voltage-Gated Closed-Loop Control of Small-Molecule Release from Alumina-Coated Nanoporous Gold Thin Film Electrodes Advanced Functional Materials. 28(29), (2018).Google Scholar
Zhao, C., Wada, T., De Andrade, V., Gursoy, D., Kato, H. and Chen-Wiegart, Y.-c.K.: Imaging of 3D Morphological Evolution of Nanoporous Silicon Anode in Lithium Ion Battery by X-Ray Nano-Tomography Nano Energy. (2018).Google Scholar
Chen, Q. and Sieradzki, K.: Mechanisms and Morphology Evolution in Dealloying J. Electrochem. Soc. 160(6), C226 (2013).CrossRefGoogle Scholar
Chen, Q. and Sieradzki, K.: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems Nature Materials. 12(12), 1102 (2013).CrossRefGoogle ScholarPubMed
Kolluri, K. and Demkowicz, M.J.: Coarsening by network restructuring in model nanoporous gold Acta Materialia. 59(20), 7645 (2011).CrossRefGoogle Scholar
Chen-Wiegart, Y.C.K., Wang, S., Chu, Y.S., Liu, W.J., McNulty, I., Voorhees, P.W. and Dunand, D.C.: Structural evolution of nanoporous gold during thermal coarsening Acta Materialia. 60(12), 4972 (2012).CrossRefGoogle Scholar
Lilleodden, E.T. and Voorhees, P.W.: On the topological, morphological, and microstructural characterization of nanoporous metals Mrs Bulletin. 43(1), 20 (2018).CrossRefGoogle Scholar
Wada, T., Yubuta, K., Inoue, A. and Kato, H.: Dealloying by metallic melt Materials Letters. 65(7), 1076 (2011).Google Scholar
Geslin, P.A., McCue, I., Gaskey, B., Erlebacher, J. and Karma, A.: Topology-generating interfacial pattern formation during liquid metal dealloying Nature Communications. 6, (2015).Google ScholarPubMed
McCue, I., Gaskey, B., Geslin, P.A., Karma, A. and Erlebacher, J.: Kinetics and morphological evolution of liquid metal dealloying Acta Materialia. 115, 10 (2016).CrossRefGoogle Scholar
Zhao, C.H., Kisslinger, K., Huang, X.J., Lu, M., Camino, F., Lin, C.H., Yan, H.F., Nazaretski, E., Chu, Y., Ravel, B., Liu, M.Z. and Chen-Wiegart, Y.C.K.: Bi-continuous pattern formation in thin films via solid-state interfacial dealloying studied by multimodal characterization Materials Horizons. 6(10), 1991 (2019).Google Scholar
Wada, T., Yubuta, K. and Kato, H.: Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction Scripta Materialia. 118, 33 (2016).CrossRefGoogle Scholar
Sun, Y.X., Ren, Y.B. and Yang, K.: New preparation method of micron porous copper through physical vacuum dealloying of Cu-Zn alloys Materials Letters. 165, 1 (2016).CrossRefGoogle Scholar
Lu, Z., Li, C., Han, J.H., Zhang, F., Liu, P., Wang, H., Wang, Z.L., Cheng, C., Chen, L.H., Hirata, A., Fujita, T., Erlebacher, J. and Chen, M.W.: Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying Nature Communications. 9, 7 (2018).CrossRefGoogle ScholarPubMed
Wang, C.C. and Chen, Q.: Reduction-Induced Decomposition: Spontaneous Formation of Monolithic Nanoporous Metals of Tunable Structural Hierarchy and Porosity Chem. Mat. 30(11), 3894 (2018).CrossRefGoogle Scholar
Chatterjee, S., Anikin, A., Ghoshal, D., Hart, J.L., Li, Y.W., Intikhab, S., Chareev, D.A., Volkova, O.S., Vasiliev, A.N., Taheri, M.L., Koratkar, N., Karapetrov, G. and Snyder, J.: Nanoporous metals from thermal decomposition of transition metal dichalcogenides Acta Materialia. 184, 79 (2020).CrossRefGoogle Scholar
Directly Below Shot Of Eiffel Tower www.gettyimages.com, iStock Collection #537638982, Getty Images, City, 2020).Google Scholar
Balk, T.J., Eberl, C., Sun, Y., Hemker, K.J. and Gianola, D.S.: Tensile and Compressive Microspecimen Testing of Bulk Nanoporous Gold Jom. 61(12), 26 (2009).Google Scholar
Soubielle, S., Diologent, F., Salvo, L. and Mortensen, A.: Creep of replicated microcellular aluminium Acta Materialia. 59(2), 440 (2011).CrossRefGoogle Scholar
Witherspoon, C., Zheng, P., Chmielus, M., Dunand, D.C. and Mullner, P.: Effect of porosity on the magneto-mechanical behavior of polycrystalline magnetic shape-memory Ni-Mn-Ga foams Acta Materialia. 92, 64 (2015).Google Scholar