Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-23T05:35:41.296Z Has data issue: false hasContentIssue false

Belowground carbon stored in a tropical mountain cloud forest of east-central Mexico

Published online by Cambridge University Press:  25 September 2024

Yokebed Cruz de Jesús
Affiliation:
Centro de Investigaciones Biológicas, Universidad Autonoma del Estado de Hidalgo, Pachuca, Mexico
Numa P. Pavón*
Affiliation:
Centro de Investigaciones Biológicas, Universidad Autonoma del Estado de Hidalgo, Pachuca, Mexico
Oscar Briones
Affiliation:
Red de biología evolutiva, Instituto de Ecología, AC, Xalapa, Mexico
Arturo Sánchez-González
Affiliation:
Centro de Investigaciones Biológicas, Universidad Autonoma del Estado de Hidalgo, Pachuca, Mexico
Rodrigo Rodríguez-Laguna
Affiliation:
Área Académica de Ciencias Agrícolas y Forestales, Universidad Autonoma del Estado de Hidalgo, Tulancingo, Mexico
*
Corresponding author: Numa P. Pavón; Email: npavon@uaeh.edu.mx

Abstract

Carbon stocks in root biomass and soil organic carbon (SOC) were analysed in tropical mountain cloud forest (TMCF) of Mexico. Additionally, the hypothesis that the concentration of roots in the forest is not homogeneous but that they are concentrated near the trunks of the trees was evaluated. Root biomass was 707.68 ± 150.41 g·m−2, which stores ∼353.85 ± 75.21 g·C·m−2. Coarse roots contributed 36.8%, fine roots 35.5%, and very fine roots 27.7% of the total biomass. The results did not support the hypothesis that fine roots are concentrated near the trunks of the trees. On average, SOC was 108.23 ± 33.21 Mg·C·ha−1. Mean C stored in the soil (C in roots + SOC) was 111.77 ± 32.97 Mg·C·ha−1. The TMCF is an ecosystem with a high potential for soil carbon storage, with similar C values reported to those in other tropical forests.

Type
Short Communication
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avilés-Hernández, V, Velázquez-Martínez, A, Angeles-Pérez, G, Santos-Posadas, H and Llanderal, T (2009) Variación en almacenes de carbono en suelos de una toposecuencia. Agrociencia 43, 457464.Google Scholar
Barbhuiya, AR, Arunachalam, A, Pandey, HN, Khan, ML and Arunachalam, K (2012) Fine root dynamics in undisturbed and disturbed stands of a tropical wet evergreen forest in northeast India. Tropical Ecology, 53, 6979.Google Scholar
Belsky, AJ (1994) Influences of trees on Savanna productivity: tests of shade, nutrients, and tree-grass competition. Ecology 75, 922932. https://doi.org/10.2307/1939416 CrossRefGoogle Scholar
Carrillo-Anzúres, F, Acosta-Mireles, M, Flores-Ayala, E, Juárez-Bravo, JE and Bonilla-Padilla, E (2018) Estimación de biomasa y carbono en dos especies arboreas en La Sierra Nevada, México. Revista Mexicana de Ciencias Agrícolas 5, 779793.CrossRefGoogle Scholar
Case, MJ, Johnson, BG, Bartowitz, KJ and Hudiburg, TW (2021) Forests of the future: Climate change impacts and implications for carbon storage in the Pacific Northwest, USA. Forest Ecology and Management 482, 118886.CrossRefGoogle Scholar
Coyle, DR, Coleman, M and Aubrey, DP (2008) Above-and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization. Canadian Journal of Forest Research 38, 13351348. https://doi.org/10.1139/X07-231 CrossRefGoogle Scholar
De Jong, BHJ, Cairns, M, Haggerty, P, Ramírez-Marcial, N, Ochoa-Gaona, S, Mendoza-Vega, J, González-Espinosa, M and March-Mifsut, I (1999) Land-use change and carbon flux between 1970s and 1990s in central highlands of Chiapas, Mexico. Environmental Management 23, 373385. https://doi.org/10.1007/s002679900193 CrossRefGoogle ScholarPubMed
Dhyani, SK and Tripathi, RS (2000) Biomass and production of fine and coarse roots of tres under agrisilvicultural practices in north-east India. Agroforestry Systems 50, 107121. https://doi.org/10.1023/A:1006439018621 CrossRefGoogle Scholar
Finér, L, Ohashi, M, Noguchi, K and Hirano,  (2011) Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261, 265277. https://doi.org/10.1016/j.foreco.2010.10.016 CrossRefGoogle Scholar
Fujimaki, R, Tateno, R, Hirobe, M, Tokuchi, N and Takeda, H (2004) Fine root mass in relation to soil N supply in a cool temperate forest. Ecological Research 19, 559562. https://doi.org/10.1111/j.1440-1703.2004.00669.x CrossRefGoogle Scholar
González-Espinosa, M, Meave, JA, Ramírez-Marcial, N, Toledo-Aceves, T, Lorea-Hernández, FG and Ibarra-Manríquez, G (2012) Los bosques de niebla de México: conservación y restauración de su componente arbóreo. Ecosistemas 21, 3652. https://doi.org/10.4067/S0717-92002015000200011 Google Scholar
González-Molina, L, Etchevers-Barra, J and Hidalgo-Moreno, C (2008) Carbono en suelos de ladera: factores que deben considerarse para determinar su cambio en el tiempo. Agrociencia 42, 741751.Google Scholar
Hamilton, LS (1995) Mountain cloud forest conservation and research: a synopsis. Mountain Research and Development 15, 259266. https://doi.org/10.2307/3673933 CrossRefGoogle Scholar
Han, M, Tang, M, Shi, B and Jin, G (2020) Effect of canopy gap size on soil respiration in a mixed broadleaved-Korean pine forest: evidence from biotic and abiotic factors. European Journal of Soil Biology 99, 103194. https://doi.org/10.1016/j.ejsobi.2020.103194 CrossRefGoogle Scholar
Houghton, RA (2001). Global terrestrial productivity and carbon balance. In Yoy, J, Saugier, B, Mooney, HA (eds) Terrestrial Global Productivity. San Diego CA: Academic Press, pp. 499520.CrossRefGoogle Scholar
Liu, Y, Liu, S, Wan, S, Wang, J, Wang, H and Liu, K (2017) Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest. Science of the Total Environment 574, 14481455. https://doi.org/10.1016/j.scitotenv.2016.08.116 CrossRefGoogle Scholar
Llerena, SA, Kurbatova, A and Grigorets, EA (2021) Carbon sequestration in Tropical Montane Cloud Forests. Environment and Human: Ecological Studies 11, 377397. https://doi.org/10.31862/2500-2961-2021-11-3-377-397 Google Scholar
Luna-Vega, I, Ocegueda, S and Alcántara, O (1994) Florística y notas biogeográficas del bosque mesófilo de montaña del municipio de Tlanchinol, Hidalgo, México. Anales del Instituto de Biología, UNAM 65, 3152.Google Scholar
Ma, H, Mo, L, Crowther, TW, Maynard, DS, van den Hoogen, J, Stocker, BD, Terrer, C and Zohner, CM (2021) The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nature Ecology & Evolution 5, 11101122. https://doi.org/10.1038/s41559-021-01485-1 CrossRefGoogle ScholarPubMed
Macinnis-Ng, CMO, Fuentes, S, O’Grady, AP, Palmer, AR, Taylor, D, Whitley, RJ, Yunusa, I, Zeppel, MJB and Eamus, D (2010) Root biomass distribution and soil properties of an open woodland on a duplex soil. Plant and Soil 327, 377388. https://doi.org/10.1007/s11104-009-0061-7 CrossRefGoogle Scholar
Masuhara, A, Velarde, EV, Pérez, J, Gutiérrez, D, Vázquez, JC, Salcedor, E, Juárez, MJ and Merino, A (2015) Carbono almacenado en diferentes sistemas agroforestales de café en Huatusco, Veracruz, México. Revista Amazónica Ciencia y Tecnología 4, 6693.CrossRefGoogle Scholar
Moser, G, Leuschner, C, Hertel, D, Graefe, S, Soethe, N and Lost, S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology 17, 22112226. https://doi.org/10.1111/j.1365-2486.2010.02367.x CrossRefGoogle Scholar
Pausch, J and Kuzyakov, Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology 24, 112. https://doi.org/10.1111/gcb.1385 CrossRefGoogle ScholarPubMed
Paz-Pellat, FP, Espinoza, JA, Gaistardo, COC, Etchevers, JD and de Jong, B (2016) Distribución espacial y temporal del carbono orgánico del suelo en los ecosistemas terrestres de México. Terra Latinoamericana 34, 289310.Google Scholar
Quintero-Gradilla, SD, Muñoz, A and Castillo-Parra, VM (2022) Estimación de carbono en las raíces en bosques de la Sierra de Manantlán, México. Madera y Bosques 28, e2822431. https://doi.org/10.21829/myb.2022.2822431 CrossRefGoogle Scholar
Rosado, BHP, Martins, AC, Colomeu, TC, Oliveira, RS, Joly, CA and Aidar, MPM (2011) Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotropica 11, 203209. https://doi.org/10.1590/S1676-06032011000300018 CrossRefGoogle Scholar
Ruiz-Jiménez, CA, Téllez-Valdés, O and Luna-Vega, I (2012) Clasificación de los bosques mesófilos de montaña de México: afinidades de la flora. Revista Mexicana de Biodiversidad 83, 11101144. https://doi.org/10.7550/rmb.29383 CrossRefGoogle Scholar
Spracklen, DV and Righelato, R (2014) Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 27412754. https://doi.org/10.5194/bg-11-2741-2014 CrossRefGoogle Scholar
Vahedi, AA, Bijani-Nejad, AR and Djomo, A (2016) Horizontal and vertical distribution of carbon stock in natural stands of Hyrcanian lowland forests: a case study, Nour Forest Park, Iran. Journal of Forest Science 62, 501510. https://doi.org/10.17221/49/2016-JFS CrossRefGoogle Scholar
Vitousek, PM and Sanford, RL (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17, 137167. https://doi.org/10.1146/annurev.es.17.110186.001033 CrossRefGoogle Scholar
Yuan, ZY and Chen, HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in Boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences 29, 204221. https://doi.org/10.1080/07352689.2010.483579 CrossRefGoogle Scholar
Zhang, C, Chen, L and Jiang, J (2014) Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China. Journal of Arid Land 6, 601611. https://doi.org/10.1007/s40333-014-0004-x CrossRefGoogle Scholar