Published online by Cambridge University Press: 23 September 2022
Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.
The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.
Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.
We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
These authors contributed equally to this work.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.