Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T01:58:45.377Z Has data issue: false hasContentIssue false

Association between dietary fatty acids and depressive symptoms in Chinese haemodialysis patients: a cross-sectional study

Published online by Cambridge University Press:  15 October 2024

Shuang Zhang
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Shu-Xin Liu*
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Qi-Jun Wu
Affiliation:
Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People’s Republic of China
Zhi-Hong Wang
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Hong Liu
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Ping Xiao
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Yan Lu
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Cui Dong
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
Qing-Mei Meng
Affiliation:
Department of Nephrology, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China Dalian Key Laboratory of Intelligent Blood Purification, Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian, Liaoning 116033, People’s Republic of China
*
*Corresponding author: Shu-Xin Liu, email root8848@sina.com

Abstract

Depression is highly prevalent in haemodialysis patients, and diet might play an important role. Therefore, we conducted this cross-sectional study to determine the association between dietary fatty acids (FA) consumption and the prevalence of depression in maintenance haemodialysis (MHD) patients. Dietary intake was assessed using a validated FFQ between December 2021 and January 2022. The daily intake of dietary FA was categorised into three groups, and the lowest tertile was used as the reference category. Depression was assessed using the Patient Health Questionnaire-9. Logistic regression and restricted cubic spline (RCS) models were applied to assess the relationship between dietary FA intake and the prevalence of depression. As a result, after adjustment for potential confounders, a higher intake of total FA [odds ratio (OR)T3 vs. T1 = 1·59, 95 % confidence interval (CI) = 1·04, 2·46] and saturated fatty acids (SFA) (ORT3 vs. T1 = 1·83, 95 % CI = 1·19, 2·84) was associated with a higher prevalence of depressive symptoms. Significant positive linear trends were also observed (P < 0·05) except for SFA intake. Similarly, the prevalence of depression in MHD patients increased by 20% (OR = 1.20, 95% CI = 1.01–1.43) for each standard deviation increment in SFA intake. RCS analysis indicated an inverse U-shaped correlation between SFA and depression (Pnonlinear > 0·05). Additionally, the sensitivity analysis produced similar results. Furthermore, no statistically significant association was observed in the subgroup analysis with significant interaction. In conclusion, higher total dietary FA and SFA were positively associated with depressive symptoms among MHD patients. These findings inform future research exploring potential mechanism underlying the association between dietary FA and depressive symptoms in MHD patients.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Khan, A, Khan, AH, Adnan, AS, et al. (2019) Prevalence and predictors of depression among hemodialysis patients: a prospective follow-up study. BMC Public Health 19, 531.CrossRefGoogle ScholarPubMed
Palmer, S, Vecchio, M, Craig, JC, et al. (2013) Prevalence of depression in chronic kidney disease: systematic review and meta-analysis of observational studies. Kidney Int 84, 179191.CrossRefGoogle ScholarPubMed
Institute for Health Metrics and Evaluation (2020) GBD Compare. Seattle, WA: IHME, University of Washington.Google Scholar
Meng, Y, Wu, HT, Niu, JL, et al. (2022) Prevalence of depression and anxiety and their predictors among patients undergoing maintenance hemodialysis in Northern China: a cross-sectional study. Ren Fail 44, 933944.CrossRefGoogle ScholarPubMed
Sensky, T, Leger, C & Gilmour, S (1996) Psychosocial and cognitive factors associated with adherence to dietary and fluid restriction regimens by people on chronic haemodialysis. Psychother Psychosom 65, 3642.CrossRefGoogle ScholarPubMed
Cukor, D, Cohen, SD, Peterson, RA, et al. (2007) Psychosocial aspects of chronic disease: ESRD as a paradigmatic illness. J Am Soc Nephrol 18, 30423055.CrossRefGoogle ScholarPubMed
Farrokhi, F, Abedi, N, Beyene, J, et al. (2014) Association between depression and mortality in patients receiving long-term dialysis: a systematic review and meta-analysis. Am J Kidney Dis 63, 623635.CrossRefGoogle ScholarPubMed
Weisbord, SD, Mor, MK, Sevick, MA, et al. (2014) Associations of depressive symptoms and pain with dialysis adherence, health resource utilization, and mortality in patients receiving chronic hemodialysis. Clin J Am Soc Nephrol 9, 15941602.CrossRefGoogle ScholarPubMed
Kurella, M, Kimmel, PL, Young, BS, et al. (2005) Suicide in the United States end-stage renal disease program. J Am Soc Nephrol 16, 774781.CrossRefGoogle ScholarPubMed
Marrone, MC & Coccurello, R (2019) Dietary fatty acids and microbiota-brain communication in neuropsychiatric diseases. Biomolecules 10, 12.CrossRefGoogle ScholarPubMed
Sahathevan, S, Khor, BH, Ng, HM, et al. (2020) Understanding development of malnutrition in hemodialysis patients: a narrative review. Nutrients 12, 3147.CrossRefGoogle ScholarPubMed
Beydoun, MA, Fanelli, KM, Beydoun, HA, et al. (2015) Associations of the ratios of n-3 to n-6 dietary fatty acids with longitudinal changes in depressive symptoms among US women. Am J Epidemiol 181, 691705.CrossRefGoogle ScholarPubMed
Oddy, WH, Hickling, S, Smith, MA, et al. (2011) Dietary intake of n-3 fatty acids and risk of depressive symptoms in adolescents. Depress Anxiety 28, 582588.CrossRefGoogle ScholarPubMed
Li, D, Liang, H, Tong, Y, et al. (2020) Association between saturated fatty acid intake and depressive symptoms in midlife women: a prospective study. J Affect Disord 267, 1722.CrossRefGoogle ScholarPubMed
Lai, JS, Oldmeadow, C, Hure, AJ, et al. (2016) Inflammation mediates the association between fatty acid intake and depression in older men and women. Nutr Res 36, 234245.CrossRefGoogle ScholarPubMed
Hryhorczuk, C, Florea, M, Rodaros, D, et al. (2016) Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids. Neuropsychopharmacol 41, 811821.CrossRefGoogle Scholar
Wu, J, Song, X, Chen, GC, et al. (2019) Dietary pattern in midlife and cognitive impairment in late life: a prospective study in Chinese adults. Am J Clin Nutr 110, 912920.CrossRefGoogle ScholarPubMed
Rosa, CS, Gracia-Marco, L, Barker, AR, et al. (2015) Assessment of physical activity by accelerometer and IPAQ-Short version in patients with chronic kidney disease undergoing hemodialysis. Blood Purif 40, 250255.CrossRefGoogle ScholarPubMed
Julayanont, P, Brousseau, M, Chertkow, H, et al. (2014) Montreal Cognitive Assessment Memory Index Score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer’s disease. J Am Geriatr Soc 62, 679684.CrossRefGoogle ScholarPubMed
Lu, J, Li, D, Li, F, et al. (2011) Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol 24, 184190.CrossRefGoogle ScholarPubMed
Daugirdas, JT (1993) Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol 4, 12051213.CrossRefGoogle ScholarPubMed
Cui, Q, Xia, Y, Liu, Y, et al. (2022) Validity and reproducibility of a FFQ for assessing dietary intake among residents of northeast China: northeast cohort study of China. Br J Nutr 1114.Google Scholar
YYPUM Press (2018) Chinese Food Composition Table. Beijing, China: Peking University Medical Press.Google Scholar
Kroenke, K, Spitzer, RL & Williams, JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16, 606613.CrossRefGoogle ScholarPubMed
Chen, S, Chiu, H, Xu, B, et al. (2010) Reliability and validity of the PHQ-9 for screening late-life depression in Chinese primary care. Int J Geriatr Psychiatry 25, 11271133.CrossRefGoogle ScholarPubMed
Yu, X, Tam, WW, Wong, PT, et al. (2012) The Patient Health Questionnaire-9 for measuring depressive symptoms among the general population in Hong Kong. Compr Psychiatry 53, 95102.CrossRefGoogle ScholarPubMed
Zhang, Y, Ting, R, Lam, M, et al. (2013) Measuring depressive symptoms using the Patient Health Questionnaire-9 in Hong Kong Chinese subjects with type 2 diabetes. J Affect Disord 151, 660666.CrossRefGoogle Scholar
Zhang, M, Li, Z, Yang, S, et al. (2020) The association between dietary patterns and depressive symptoms in Chinese adults. Biomed Res Int 2020, 8380151.Google ScholarPubMed
Lin, Z, Qin, X, Yang, Y, et al. (2021) Higher dietary fibre intake is associated with lower CVD mortality risk among maintenance haemodialysis patients: a multicentre prospective cohort study. Br J Nutr 126, 15101518.CrossRefGoogle ScholarPubMed
Narasaki, Y, Okuda, Y, Kalantar, SS, et al. (2021) Dietary potassium intake and mortality in a prospective hemodialysis cohort. J Ren Nutr 31, 411420.CrossRefGoogle Scholar
Di Iorio, B, Cirillo, M, Bellizzi, V, et al. (2007) Prevalence and correlates of anemia and uncontrolled anemia in chronic hemodialysis patients--the Campania Dialysis Registry. Int J Artif Organs 30, 325333.CrossRefGoogle ScholarPubMed
Inagaki, K, Tawada, N, Takanashi, M, et al. (2022) The association between body mass index and all-cause mortality in Japanese patients with incident hemodialysis. PLoS One 17, e269849.CrossRefGoogle ScholarPubMed
Tsigalou, C, Chalikias, G, Kantartzi, K, et al. (2013) Differential effect of baseline adiponectin on all-cause mortality in hemodialysis patients depending on initial body mass index. Long-term follow-up data of 4·5 years. J Ren Nutr 23, 4556.CrossRefGoogle ScholarPubMed
Gong, QH, Li, SX, Wang, SJ, et al. (2021) Dinner-to-bed time is independently associated with overweight/obesity in Chinese school-aged children. Eat Weight Disord 26, 26572663.CrossRefGoogle ScholarPubMed
Matsuoka, YJ, Sawada, N, Mimura, M, et al. (2017) Dietary fish, n-3 polyunsaturated fatty acid consumption, and depression risk in Japan: a population-based prospective cohort study. Transl Psychiatry 7, e1242.CrossRefGoogle ScholarPubMed
Grosso, G, Micek, A, Marventano, S, et al. (2016) Dietary n-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J Affect Disord 205, 269281.CrossRefGoogle ScholarPubMed
Panagiotakos, DB, Mamplekou, E, Pitsavos, C, et al. (2010) Fatty acids intake and depressive symptomatology in a Greek sample: an epidemiological analysis. J Am Coll Nutr 29, 586594.CrossRefGoogle Scholar
Aihara, Y, Minai, J, Aoyama, A, et al. (2011) Depressive symptoms and past lifestyle among Japanese elderly people. Community Ment Health J 47, 186193.CrossRefGoogle ScholarPubMed
Payne, ME, Hybels, CF, Bales, CW, et al. (2006) Vascular nutritional correlates of late-life depression. Am J Geriatr Psychiatry 14, 787795.CrossRefGoogle ScholarPubMed
Tsai, CF, Chuang, CH, Wang, YP, et al. (2022) Differences in gut microbiota correlate with symptoms and regional brain volumes in patients with late-life depression. Front Aging Neurosci 14, 885393.CrossRefGoogle ScholarPubMed
Carabotti, M, Scirocco, A, Maselli, MA, et al. (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28, 203209.Google ScholarPubMed
Franceschi, C, Capri, M, Monti, D, et al. (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128, 92105.CrossRefGoogle ScholarPubMed
Leung, K & Thuret, S (2015) Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare (Basel) 3, 898916.CrossRefGoogle ScholarPubMed
Brites, D & Fernandes, A (2015) Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 9, 476.CrossRefGoogle ScholarPubMed
Ogbonnaya, ES, Clarke, G, Shanahan, F, et al. (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 78, e7e9.CrossRefGoogle ScholarPubMed
Gupta, S, Knight, AG, Gupta, S, et al. (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120, 10601071.CrossRefGoogle ScholarPubMed
Cone, JJ, Chartoff, EH, Potter, DN, et al. (2013) Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS One 8, e58251.CrossRefGoogle ScholarPubMed
Sharma, S & Fulton, S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes (Lond) 37, 382389.CrossRefGoogle ScholarPubMed
Sharma, S, Zhuang, Y & Gomez-Pinilla, F (2012) High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour. Sci Rep 2, 431.CrossRefGoogle ScholarPubMed
Pawelczyk, T, Grancow-Grabka, M, Trafalska, E, et al. (2019) An increase in plasma brain derived neurotrophic factor levels is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Psychopharmacol (Berl) 236, 28112822.CrossRefGoogle ScholarPubMed
Lee, BH & Kim, YK (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 7, 231235.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material
Download Zhang et al. supplementary material(File)
File 71.5 KB