Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-26T22:59:58.882Z Has data issue: false hasContentIssue false

Diffusion-driven flows in a nonlinear stratified fluid layer

Published online by Cambridge University Press:  08 November 2024

Lingyun Ding*
Affiliation:
Department of Mathematics, University of California Los Angeles, CA 90095, USA
*
Email address for correspondence: dingly@g.ucla.edu

Abstract

Diffusion-driven flow is a boundary layer flow arising from the interplay of gravity and diffusion in density-stratified fluids when a gravitational field is non-parallel to an impermeable solid boundary. This study investigates diffusion-driven flow within a nonlinearly density-stratified fluid confined between two tilted parallel walls. We introduce an asymptotic expansion inspired by the centre manifold theory, where quantities are expanded in terms of derivatives of the cross-sectional averaged stratified scalar (such as salinity or temperature). This technique provides accurate approximations for velocity, density and pressure fields. Furthermore, we derive an evolution equation describing the cross-sectional averaged stratified scalar. This equation takes the form of the traditional diffusion equation but replaces the constant diffusion coefficient with a positive-definite function dependent on the solution's derivative. Numerical simulations validate the accuracy of our approximations. Our investigation of the effective equation reveals that the density profile depends on a non-dimensional parameter denoted as $\gamma$ representing the flow strength. In the large $\gamma$ limit, the system is approximated by a diffusion process with an augmented diffusion coefficient of $1+\cot ^{2}\theta$, where $\theta$ signifies the inclination angle of the channel domain. This parameter regime is where diffusion-driven flow exhibits its strongest mixing ability. Conversely, in the small $\gamma$ regime, the density field behaves like pure diffusion with distorted isopycnals. Lastly, we show that the classical thin film equation aligns with the results obtained using the proposed expansion in the small $\gamma$ regime but fails to accurately describe the dynamics of the density field for large $\gamma$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abaid, N., Adalsteinsson, D., Agyapong, A. & McLaughlin, R.M. 2004 An internal splash: levitation of falling spheres in stratified fluids. Phys. Fluids 16 (5), 15671580.CrossRefGoogle Scholar
Achdou, Y., Pironneau, O. & Valentin, F. 1998 Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147 (1), 187218.CrossRefGoogle Scholar
Allshouse, M.R. 2010 Novel applications of diffusion-driven flow. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Allshouse, M.R., Barad, M.F. & Peacock, T. 2010 Propulsion generated by diffusion-driven flow. Nat. Phys. 6 (7), 516519.CrossRefGoogle Scholar
Aref, H., et al. 2017 Frontiers of chaotic advection. Rev. Mod. Phys. 89 (2), 025007.CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235 (1200), 6777.Google Scholar
Aulbach, B. & Wanner, T. 1996 Integral manifolds for Carathéodory type differential equations in Banach spaces. In Six Lectures on Dynamical Systems, vol. 2. World Scientific.CrossRefGoogle Scholar
Aulbach, B. & Wanner, T. 1999 Invariant foliations for Carathéodory type differential equations in Banach spaces. In Advances of Stability Theory at the End of XX Century. Gordon & Breach Publishers.Google Scholar
Balakotaiah, V., Chang, H.-C. & Smith, F.T. 1995 Dispersion of chemical solutes in chromatographs and reactors. Phil. Trans. R. Soc. Lond. Ser. A Phys. Engng Sci. 351 (1695), 3975.Google Scholar
Braunsfurth, M.G., Skeldon, A.C., Juel, A., Mullin, T. & Riley, D.S. 1997 Free convection in liquid gallium. J. Fluid Mech. 342, 295314.CrossRefGoogle Scholar
Camassa, R., Ding, L., McLaughlin, R.M., Overman, R., Parker, R. & Vaidya, A. 2022 Critical density triplets for the arrestment of a sphere falling in a sharply stratified fluid. In Recent Advances in Mechanics and Fluid-Structure Interaction with Applications: The Bong Jae Chung Memorial Volume, p. 69. Springer.CrossRefGoogle Scholar
Camassa, R., Harris, D.M., Hunt, R., Kilic, Z. & McLaughlin, R.M. 2019 A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids. Nat. Commun. 10 (1), 18.CrossRefGoogle ScholarPubMed
Carney, S.P. & Engquist, B. 2022 Heterogeneous multiscale methods for rough-wall laminar viscous flow. Commun. Math. Sci. 20 (8), 20692106.CrossRefGoogle Scholar
Carr, J. 1979 Applications of Centre Manifold Theory. Lefschetz Center for Dynamical Systems, Division of Applied Mathematics.CrossRefGoogle Scholar
Cenedese, C. & Adduce, C. 2008 Mixing in a density-driven current flowing down a slope in a rotating fluid. J. Fluid Mech. 604, 369388.CrossRefGoogle Scholar
Chang, R. & Santiago, J.G. 2023 Taylor dispersion in arbitrarily shaped axisymmetric channels. J. Fluid Mech. 976, A30.CrossRefGoogle Scholar
Chashechkin, Y.D. 2018 Waves, vortices and ligaments in fluid flows of different scales. Phys. Astron. Intl J. 2 (2), 105108.CrossRefGoogle Scholar
Chashechkin, Y.D. & Mitkin, V.V. 2004 A visual study on flow pattern around the strip moving uniformly in a continuously stratified fluid. J. Vis. 7 (2), 127134.CrossRefGoogle Scholar
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.CrossRefGoogle Scholar
Dell, R.W. & Pratt, L.J. 2015 Diffusive boundary layers over varying topography. J. Fluid Mech. 769, 635653.CrossRefGoogle Scholar
Dimitrieva, N.F. 2019 Stratified flow structure near the horizontal wedge. Fluid Dyn. 54, 940947.CrossRefGoogle Scholar
Ding, L. 2022 Scalar transport and mixing. PhD thesis, The University of North Carolina at Chapel Hill.Google Scholar
Ding, L. 2023 Shear dispersion of multispecies electrolyte solutions in the channel domain. J. Fluid Mech. 970, A27.CrossRefGoogle Scholar
Ding, L., Hunt, R., McLaughlin, R.M. & Woodie, H. 2021 Enhanced diffusivity and skewness of a diffusing tracer in the presence of an oscillating wall. Res. Math. Sci. 8 (3), 129.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 a Determinism and invariant measures for diffusing passive scalars advected by unsteady random shear flows. Phys. Rev. Fluids 7 (7), 074502.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2022 b Ergodicity and invariant measures for a diffusing passive scalar advected by a random channel shear flow and the connection between the Kraichnan-Majda model and Taylor-Aris dispersion. Phys. D: Nonlinear Phenom. 432, 133118.CrossRefGoogle Scholar
Ding, L. & McLaughlin, R.M. 2023 Dispersion induced by unsteady diffusion-driven flow in a parallel-plate channel. Phys. Rev. Fluids 8, 084501.CrossRefGoogle Scholar
Drake, H.F., Ferrari, R. & Callies, J. 2020 Abyssal circulation driven by near-boundary mixing: water mass transformations and interior stratification. J. Phys. Oceanogr. 50 (8), 22032226.CrossRefGoogle Scholar
French, A. 2017 Diffusion-driven flow in three dimensions. PhD thesis, Monash University.Google Scholar
Gill, W.N. 1967 A note on the solution of transient dispersion problems. Proc. R. Soc. Lond. A Math. Phys. Sci. 298 (1454), 335339.Google Scholar
Grayer, H., Yalim, J., Welfert, B.D. & Lopez, J.M. 2020 Dynamics in a stably stratified tilted square cavity. J. Fluid Mech. 883, A62.CrossRefGoogle Scholar
Grayer, H. II, Yalim, J., Welfert, B.D. & Lopez, J.M. 2021 Stably stratified square cavity subjected to horizontal oscillations: responses to small amplitude forcing. J. Fluid Mech. 915, A85.CrossRefGoogle Scholar
Hall, R.E. 1924 The densities and specific volumes of sodium chloride solutions at 25$^\circ$C. J. Washington Acad. Sci. 14 (8), 167173.Google Scholar
Hecht, F. 2012 New development in Freefem++. J. Numer. Maths 20 (3–4), 251266.Google Scholar
Hecht, F., Pironneau, O., Le Hyaric, A. & Ohtsuka, K. 2005 Freefem++ Manual. Laboratoire Jacques Louis Lions.Google Scholar
Heitz, R., Peacock, T. & Stocker, R. 2005 Optimizing diffusion-driven flow in a fissure. Phys. Fluids 17 (12), 128104.CrossRefGoogle Scholar
Holmes, R.M., de Lavergne, C. & McDougall, T.J. 2019 Tracer transport within abyssal mixing layers. J. Phys. Oceanogr. 49 (10), 26692695.CrossRefGoogle Scholar
Kistovich, A.V. & Chashechkin, Y.D. 1993 The structure of transient boundary flow along an inclined plane in a continuously stratified medium. Z. Angew. Math. Mech. 57 (4), 633639.CrossRefGoogle Scholar
Kondic, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95115.CrossRefGoogle Scholar
Levitsky, V.V., Dimitrieva, N.F. & Chashechkin, Y.D. 2019 Visualization of the self-motion of a free wedge of neutral buoyancy in a tank filled with a continuously stratified fluid and calculation of perturbations of the fields of physical quantities putting the body in motion. Fluid Dyn. 54, 948957.CrossRefGoogle Scholar
Lin, Z., Thiffeault, J.-L. & Doering, C.R. 2011 Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465476.CrossRefGoogle Scholar
Linden, P.F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.CrossRefGoogle Scholar
Linden, P.F. & Weber, J.E. 1977 The formation of layers in a double-diffusive system with a sloping boundary. J. Fluid Mech. 81 (4), 757773.CrossRefGoogle Scholar
Magnaudet, J. & Mercier, M.J. 2020 Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 52, 6191.CrossRefGoogle Scholar
Mercer, G.N. & Roberts, A.J. 1990 A centre manifold description of contaminant dispersion in channels with varying flow properties. SIAM J. Appl. Math. 50 (6), 15471565.CrossRefGoogle Scholar
Mercier, M.J., Ardekani, A.M., Allshouse, M.R., Doyle, B. & Peacock, T. 2014 Self-propulsion of immersed objects via natural convection. Phys. Rev. Lett. 112 (20), 204501.CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2023 Motion in stratified fluids. Annu. Rev. Fluid Mech. 55, 157192.CrossRefGoogle Scholar
Newman, W.I. 1984 A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I. J. Math. Phys. 25 (10), 31203123.CrossRefGoogle Scholar
Oerlemans, J. & Grisogono, B. 2002 Glacier winds and parameterisation of the related surface heat fluxes. Tellus A 54 (5), 440452.CrossRefGoogle Scholar
Page, M.A. 2011 a Combined diffusion-driven and convective flow in a tilted square container. Phys. Fluids 23 (5), 056602.CrossRefGoogle Scholar
Page, M.A. 2011 b Steady diffusion-driven flow in a tilted square container. Q. J. Mech. Appl. Maths 64 (3), 319348.CrossRefGoogle Scholar
Pareschi, L. & Russo, G. 2005 Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (1), 129155.Google Scholar
Pavliotis, G. & Stuart, A. 2008 Multiscale Methods: Averaging and Homogenization. Springer Science & Business Media.Google Scholar
Phillips, O.M. 1970 On flows induced by diffusion in a stably stratified fluid. In Deep Sea Research and Oceanographic Abstracts, vol. 17, pp. 435–443. Elsevier.CrossRefGoogle Scholar
Polyanin, A.D. & Zaitsev, V.F. 2012 Handbook of Nonlinear Partial Differential Equations: Exact Solutions, Methods, and Problems. Chapman and Hall/CRC.Google Scholar
Prandtl, L., Oswatitsch, K. & Wieghardt, K. 1942 Führer durch die strömungslehre (Essentials of Fluid Mechanics), pp. 105–108. Fried. Vieweg & Sohn.Google Scholar
Roberts, A.J. 1988 The application of centre-manifold theory to the evolution of system which vary slowly in space. ANZIAM J. 29 (4), 480500.Google Scholar
Roberts, A.J. 1996 Low-dimensional models of thin film fluid dynamics. Phys. Lett. A 212 (1-2), 6371.CrossRefGoogle Scholar
Roberts, A.J. 2014 Model Emergent Dynamics in Complex Systems, vol. 20. SIAM.CrossRefGoogle Scholar
Roberts, A.J. 2015 Macroscale, slowly varying, models emerge from the microscale dynamics. IMA J. Appl. Maths 80 (5), 14921518.CrossRefGoogle Scholar
Roberts, A.J. & Li, Z. 2006 An accurate and comprehensive model of thin fluid flows with inertia on curved substrates. J. Fluid Mech. 553, 3373.CrossRefGoogle Scholar
Roggeveen, J.V., Stone, H.A. & Kurzthaler, C. 2023 Transport of a passive scalar in wide channels with surface topography: an asymptotic theory. J. Phys.: Condens. Matter 35 (27), 274003.Google ScholarPubMed
Sánchez, F., Higuera, F.J. & Medina, A. 2005 Natural convection in tilted cylindrical cavities embedded in rocks. Phys. Rev. E 71 (6), 066308.CrossRefGoogle ScholarPubMed
Shaughnessy, E.J. & Van Gilder, J.W. 1995 Low rayleigh number conjugate convection in straight inclined fractures in rock. Numer. Heat Transfer A: Appl. 28 (4), 389408.CrossRefGoogle Scholar
Smith, R. 1982 Contaminant dispersion in oscillatory flows. J. Fluid Mech. 114, 379398.CrossRefGoogle Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219 (1137), 186203.Google Scholar
Thiffeault, J.-L. 2012 Using multiscale norms to quantify mixing and transport. Nonlinearity 25 (2), R1.CrossRefGoogle Scholar
Thomas, J. & Camassa, R. 2023 Self-induced flow over a cylinder in a stratified fluid. J. Fluid Mech. 964, A38.CrossRefGoogle Scholar
Van Dyke, M. 1987 Slow variations in continuum mechanics. Adv. Appl. Mech. 25, 145.CrossRefGoogle Scholar
Vitagliano, V. & Lyons, P.A. 1956 Diffusion coefficients for aqueous solutions of sodium chloride and barium chloride. J. Am. Chem. Soc. 78 (8), 15491552.CrossRefGoogle Scholar
Woods, A.W. & Linz, S.J. 1992 Natural convection and dispersion in a tilted fracture. J. Fluid Mech. 241, 5974.CrossRefGoogle Scholar
Wu, Z. & Chen, G.Q. 2014 Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 740, 196213.CrossRefGoogle Scholar
Wunsch, C. 1970 On oceanic boundary mixing. In Deep Sea Research and Oceanographic Abstracts, vol. 17, pp. 293–301. Elsevier.CrossRefGoogle Scholar
Young, W.R. & Jones, S. 1991 Shear dispersion. Phys. Fluids A: Fluid Dyn. 3 (5), 10871101.CrossRefGoogle Scholar
Zagumennyi, I.V. & Dimitrieva, N.F. 2016 Diffusion induced flow on a wedge-shaped obstacle. Phys. Scr. 91 (8), 084002.CrossRefGoogle Scholar