Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:15:40.810Z Has data issue: false hasContentIssue false

Identifying the intensity of crop husbandry practices on the basis of weed floras1

Published online by Cambridge University Press:  27 September 2013

Glynis Jones
Affiliation:
Department of Archaeology and Prehistory, University of Sheffield
Amy Bogaard
Affiliation:
Department of Archaeology and Prehistory, University of Sheffield
Paul Halstead
Affiliation:
Department of Archaeology and Prehistory, University of Sheffield
Michael Charles
Affiliation:
Department of Archaeology and Prehistory, University of Sheffield
Helen Smith
Affiliation:
Department of Archaeology and Prehistory, University of Sheffield
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A question of broad economic and social significance is the extent to which farming in prehistoric times, and perhaps even in historical times, was characterised by cultivation on a small scale and with intensive methods. Archaeobotanically, a distinction may be possible between intensive and extensive cultivation on the basis of the weed seeds associated with ancient grain samples. To this end, an ecological study was carried out in central Ewia of the weeds of winter-sown pulses grown both intensively in gardens and extensively in fields. The recorded weed flora was demonstrably influenced by relevant husbandry variables, such as method of tillage (with hoe or plough), weeding, manuring and soil organic content. The closest correspondence, however, was with the size, type and location of cultivated plots, suggesting that the weed flora was determined by a combination of these husbandry variables. In conclusion, the potential is briefly discussed of disentangling these variables for application in an archacobotanical context.

Type
Articles
Copyright
Copyright © The Council, British School at Athens 1999

References

2 e.g. Braun-Blanquet, J., Prodome des groupements végétaux, classe de Rudereto-Secalinetales (fascicle 3: Montpellier, 1936)Google Scholar: Tüxen, R., ‘Grundriß einer Systematik der nitrophilen Unkrautgesellschaften in der Eurosibirischen Region Europas’. Mitteilungen der Floristisch-soziohgischen Arbeitsgemeinsihaft, 2 (1950), 9175Google Scholar; Ellenberg, H., Düll, R., Wirth, V., Werner, W. and Paulissen, D., ‘Zeigerwerte von Pflanzen in Mitteleuropa’, Scripta geobotanica, 18 (1992) 1258Google Scholar; Oberdorfer, E., Pflanzensoziologische Exkursionsflora (17th edn: Stuttgart, 1994)Google Scholar; but see Hüppe, J. and Hofmeister, H., ‘Syntaxonomische Fassung und Übersicht über die Ackerunkrautgescllschaften der Bundesrepublik Deulschland’. Berichte der Reinhardt Tüxen-Gesellsehaft, 2 1990), 6181Google Scholar. Phytosociology classifies vegetation into associations based on the co-occurrence of species in the field; these associations are arranged in a hierarchical system of classification based on similarity in floristic composition, with associations being grouped into alliances, alliances into orders, and orders into classes. These phytosociological groupings or communities are collectively known as syntaxa and the classification of communities as syntaxonomy. Communities are mainly defined by the presence of certain ‘character species.’ which are restricted to a certain syntaxon. For an introduction see Westhoff, V. and van der Maarel, E., ‘The Braun-Blanquet approach’, in Whittaker, R. H. (edi. Handbook of Vegetation Science 5: Ordination and Classification of Communities (The Hague, 1973), 619727Google Scholar.

3 e.g. Knörzer, K.-H., ‘Urgeschichtliche Unkräuter im Rheinland, ein Beitrag zur Entstehungsgeschichte der Segetalgesellschaften’, Vegetatio, 23 (1971), 89111Google Scholar; Willerding, U., ‘Paläo-ethnobotanischen Untersuchungen über die Entwicklung von Pflanzengesellschaften’, in Williams, O. and Tüxen, R. (eds), Werden und Vergehen von Pflanzengesellschaften (Braunschweig, 1979), 61109Google Scholar; id., ‘Ur- und frühgeschichtliche sowic mittelalterliche Unkrautfunde in Mitteleuropa’. Pflanzenkrankheiten und Pflanzenschutz, 9 (1981), 65-74; id., ‘Paläoethnobotanik und Ökologie’, Festschrift für Heinz Ellenberg: Verhandlungen der Gesellscchaft für Ökologie, 11 (1983), 489–503: Behre, K.-E. and Jacomet, S., ‘The ecological interpretation of archaeobotanical data’, in van Zeist, W., Wasylikowa, K. and Behre, K.-E. (eds), Progress in Old World Palaeoethnobotany (Rotterdam, 1991), 81108Google Scholar.

4 e.g. Groenman-van Waateringe, W., ‘The origin of crop weed communities composed of summer annuals’, Vegetatio, 41 (1979), 57–9Google Scholar; Gluza, I., ‘Neolithic cereals and weeds from the locality of the Lengyel Culture at Nowa Huta-Mogila near Cracow’, Acta Palaeobotanica, 23 (1983), 123–84Google Scholar: Behre, K.-E., ‘Kulturpflanzen und Unkräuter der vorrömischen Eisenzeit aus der Siedlung Rullstorf, Ldkr. Lüneburg’, Nachrichten aus. Niedersachsens Urgeschichte, 59 (1990), 141–65Google Scholar.

5 e.g. Wasylikowa, K., ‘Early and late medieval plant remains from Wawel Hill in Cracow (9/10th to 15th century A.D.)’, Berichte der Deutschen Batanischen Gesellschaft, 91 (1978), 107–20Google Scholar; ead., Plant remains from early and late medieval time found on the Wawel Hill in Cracow’. Acta Palaeobotanica, 19 (1978), 115200Google Scholar; Kroll, H., ‘Pflanzliche Großreste vom Siedlungshügel bei Kastanas’. in Hänsel, B.. ‘Ergebnisse der Grabungen bei Kastanas in Zentralmakedonien. 1975–1978’. Jahresheft des Römisch-Germanischen Zentralmuseums Mainz, 26 (1979), 229–39Google Scholar; id., kastanas: Ausgrabungen in einem Siedlungshügel der Bronze-und Eisenzeit Makedoniens 1975–1979: die Pflanzenfunde (Berlin, 1983); id., ‘Zur eisenzeitlichen Wintergetreide-Unkrautflora von Mitteleuropa: mit Analysenbeispielen archäologischer pflanzlicher Großreste aus Feudvar in der Vojvodina. aus Greding in Bayern und aus Dudelange in Luzembourg’, PZ 72 (1995), 106-14.

6 e.g. Willerding, U., ‘Paläo-ethnobotanische Befunde an mittelalterlichen Pflanzenresten aus Süd-Niedersachsen, Nord-Hessen und dem östlichen Westfalen’, Berichte der Deutschen Botanischen Gesellschaft, 91 (1978), 6574Google Scholar: id. 1979 (n. 3 1983); Lundslröm-Baudais, K., ‘Paleo-ethnobotanical investigation of plant remains from a neolithic lakeshore site in France: Clairvaux. Station III’, in van Zeist, W. and Casparie, W. A. (eds), Plants and Ancient Man (Rotterdam, 1984), 293305Google Scholar: Jacomet, S., Brombacher, C., and Dick, M., Archäobotanik am Zürichsee (Berichte der Zürcher Denkmalpflege Monog. 7; Zurich. 1989), esp. 144Google Scholar; id., ‘Ackerbaulichen Aktivitäten und Landnutzung’. in J. Schibler, H. Hüster-Plogmann, S. Jacomet, C. Brombacher, E. Gross-Klee, and A. Rast-Eicher (eds), Ökonomie und Ökologie neolithischer und bronzezeitlicher Ufersiedlungen am Zürichsee (Monographien der Kantonsarchäologie Zürich 20; Zurich. 1997). 254–72.

7 Lundström-Baudais, K., ‘Etude paléobotanique de la station III de Clairvaux’. in Pétrequin, P. (ed). Les sites littoraux de Clairvaux-les-Lacs (Jura) (Paris, 1986), 311404Google Scholar; Jones, G., ‘Agricultural practice in Greek prehistory’, BSA 82 (1987), 115–23Google Scholar; ead., Weed phytosociology and crop husbandry: identifying a contrast between ancient and modern practice’, in Pals, J. P., Buurman, J. and van der Veen, M. (eds), Festschrift for Professor van Zeist: Review of Palaeobotany and Palynology 73 (1992), 133–43Google Scholar.

8 e.g. Goody, J., Production and Reproduction (Cambridge. 1976Google Scholar): Sherratt, A., ‘Plough and pastoralism: aspeets of the secondary products revolution’. in Hodder, I.. Isaac, G. and Hammond, X. (eds), Pattern of the Past: Studies in Honour of David Clarke (Cambridge. 1981), 261305Google Scholar: Halstead, P., ‘Counting sheep in neolithic and bronze age Greece’, in Hodder, I.Isaac, G., and Hammond, X. (eds), Pattern of the Past: Studies in Honour of David Clarke (Cambridge, 1981), 307–39Google Scholar: id., ‘Plough and power: the economic and social significance of cultivation with the ox-drawn aid in the Mediterranean’. Bulletin on Sumerian Agriculture. 8 (1995), 11-22: Hodkinson, S., ‘Animal husbandry in the Greek polis’. in Whittaker, C. R. (ed). Pastoral Economies in Classical Antiquity (Cambridge Philological Society supp. vol. 14: Cambridge, 1988), 3574Google Scholar: Acheson, P. E., ‘Does the “economic explanation” work? Settlement, agriculture and erosion in the territory of Haliei in the Late Classical-Early Hellenistic period’. JMA 10 (1998), 165–90.Google Scholar

9 Mavrommatis, G., Χάρτης βλαστήσεως τῆς Ἑλλάδος (Athens, 1978)Google Scholar.

10 IGME, Γεωλογικός χάρτης της Ελλάδος 1:50 000: Φύλλον Κύμη (Athens, 1981)Google Scholar. This map covers only the north-east part of the study area. but adjoining sheets are, as yet unpublished.

11 Cf. Sampson, A., Σκοτεινή. θαρρούνιον: το σπήλαιο. ο οικισμός και το νεκροταΦείο (Athens, 1993), 254–62Google Scholar.

12 Parr, J. F. and Hornick, S. B., ‘Rehabilitation of degraded agricultural soils with organic wastes’, in Whitman, C. E., Parr, J. F., Papendick, R. I., and Meyer, R. E. (eds), Soil. Water, and Crop/Livestock Management Systems for Rainfed Agriculture in the Near East Region (Washington DC, 1989), 278–87Google Scholar; Rothamsted Experimental Station, Details of the Classical and Long-term Experiments up to 1967 (Harpenden, 1970), 62 table 24Google Scholar.

13 Halstead, P., ‘Traditional and ancient rural economy in Mediterranean Europe: plus ça change?JHS 107 (1987), 7787Google Scholar; Halstead, P. and Jones, G., ‘Agrarian ecology in the Greek islands’. JHS 109 (1989), 4155Google Scholar.

14 Jones, G., Charles, M., Colledge, S., and Halstead, P., ‘Towards the archaeobotanical recognition of winter-cereal irrigation: an investigation of modern weed ecology in northern Spain’, in Kroll, H. and Pasternak, R. (eds), Res Archaeobotanicae—9th Symposium IWGP (Kiel, 1995), 4968Google Scholar.

15 Palmer, C., An exploration of the effects of crop rotation regime on modern weed floras’. Environmental Archaeology. 2 (1998), 3952Google Scholar.

16 See Hill, M. O., ‘Reciprocal averaging: an eigenvector method of ordination’. Journal of Ecology. 61 (1973), 237–49Google Scholar: R. H. G. Jongman. C.J. ter Braak. and O. F. R. van Tongeren. Data Analysis in Community and Landscape Ecology Wageningen. 1987): Jones, G., ‘Numerical analysis in archaeobotany’. in van Zeist, W.. Wasylikowa, K.. and Behre, K.-E. (eds), Progress in Old World Palaeoethnobotany (Rotterdam. (1991), 6378Google Scholar.

17 ter Braak, C.J. F., A FORTRAN Program for Canonical Community Ordination by (Partial) (Detrended) (Canonical) Correspondence Analysis and Redundancy Analysisis (Version 2.1) (Wageningen. 1988)Google Scholar.

18 Hill, M. O., DECORANA A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging (New York. 1979)Google Scholar.

19 Jongman et al. (n. 16).

20 Smilauer, P., CANODRAW 3.0 User's Guide (London. 1992)Google Scholar.

21 Cf. Jones et al. (n. 14).

22 Oberdorfer, E., ‘Über Unkrautgesellschaften der Balkanhalbinsel’. Vegetatio. 4 (1954), 379411Google Scholar: Lavrendiadis, G. I., ‘Über die Unkrautgesellschaftenin Feldern von Oräokastron. Reg. Bez. Saloniki’. Documents phytosociologiques. 4 (1961), 571–84Google Scholar: Walther, K., ‘Halmfrucht-Gesellschaften in Griechenland’. Vegetatio. 18 (1969), 263–72Google Scholar.

23 Ellenberg et al. in. (n. 2): Oberdorfer (n. 2).

24 Parr and Hornick (n. 12).

25 Forbes, H., ‘The “thrice-ploughed field”: cultivation techniques in ancient and modern Greece’. Expedition. 19 (1976), 511Google Scholar.

26 Charles, M., Jones, G., and Hodgson, J. G., ‘FIBS in archaeobotany: functional interpretation of weed floras in relation to husbandry practices’. JAS 24 (1997), 1151–61Google Scholar: Bogaard, A., Hodgson, J. G., Wilson, P. J., and Band, S. R., ‘An index of weed size for assessing the soil productivity ancient crop fields’. Vegetation History and Archaeobotany. 7 (1998), 1722Google Scholar: A. Bogaard. C. Palmer. G. Jones. M. Charles, and J. G. Hodgson. ‘A FIBS approach to the use of weed ecology for the archaeobotanical recognition of crop rotation regimes’. JAS in press.