Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T06:11:26.916Z Has data issue: false hasContentIssue false

Trajectories of depression and generalised anxiety symptoms over the course of cognitive behaviour therapy in primary care: an observational, retrospective cohort

Published online by Cambridge University Press:  16 June 2022

Clarissa Bauer-Staeb
Affiliation:
Department of Psychology, University of Bath, Bath, UK
Emma Griffith
Affiliation:
Department of Psychology, University of Bath, Bath, UK Avon and Wiltshire NHS Mental Health Partnership Trust, Bath, UK
Julian J. Faraway
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath, UK
Katherine S. Button*
Affiliation:
Department of Psychology, University of Bath, Bath, UK
*
Author for correspondence: Katherine S. Button, E-mail: k.s.button@bath.ac.uk

Abstract

Background

Cognitive-behavioural therapy (CBT) has been shown to be an effective treatment for depression and anxiety. However, most research has focused on the sum scores of symptoms. Relatively little is known about how individual symptoms respond.

Methods

Longitudinal models were used to explore how depression and generalised anxiety symptoms behave over the course of CBT in a retrospective, observational cohort of patients from primary care settings (n = 5306). Logistic mixed models were used to examine the probability of being symptom-free across CBT appointments, using the 9-item Patient Health Questionnaire and the 7-item Generalised Anxiety Disorder scale as measures.

Results

All symptoms improve across CBT treatment. The results suggest that low mood/hopelessness and guilt/worthlessness improved quickest relative to other depressive symptoms, with sleeping problems, appetite changes, and psychomotor retardation/agitation improving relatively slower. Uncontrollable worry and too much worry were the anxiety symptoms that improved fastest; irritability and restlessness improved the slowest.

Conclusions

This research suggests there is a benefit to examining symptoms rather than sum scores alone. Investigations of symptoms provide the potential for precision psychiatry and may explain some of the heterogeneity observed in clinical outcomes when only sum scores are considered.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. Retrieved from http://CRAN.R-project.org/package=lme4.Google Scholar
Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., … Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 33593369. doi:10.1017/s0033291716002300.CrossRefGoogle Scholar
Bekhuis, E., Schoevers, R., de Boer, M., Peen, J., Dekker, J., Van, H., & Boschloo, L. (2018). Symptom-specific effects of psychotherapy versus combined therapy in the treatment of mild to moderate depression: A network approach. Psychotherapy and Psychosomatics, 87(2), 121123. https://doi.org/10.1159/000486793.CrossRefGoogle ScholarPubMed
Boschloo, L., Bekhuis, E., Weitz, E. S., Reijnders, M., DeRubeis, R. J., Dimidjian, S., … Cuijpers, P. (2019a). The symptom-specific efficacy of antidepressant medication vs. cognitive behavioral therapy in the treatment of depression: Results from an individual patient data meta-analysis. World Psychiatry, 18(2), 183191. https://doi.org/10.1002/wps.20630.CrossRefGoogle ScholarPubMed
Boschloo, L., Cuijpers, P., Karyotaki, E., Berger, T., Moritz, S., Meyer, B., & Klein, J. P. (2019b). Symptom-specific effectiveness of an internet-based intervention in the treatment of mild to moderate depressive symptomatology: The potential of network estimation techniques. Behaviour Research and Therapy, 122, 103440. https://doi.org/10.1016/j.brat.2019.103440.CrossRefGoogle ScholarPubMed
Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., … Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892903. https://doi.org/10.1037/abn0000446.CrossRefGoogle ScholarPubMed
Buckman, J., Cohen, Z., O'Driscoll, C., Fried, E., Saunders, R., Ambler, G., … Pilling, S. (2021). Predicting prognosis for adults with depression using individual symptom data: A comparison of modelling approaches. Psychological Medicine, 111. doi:10.1017/S0033291721001616.CrossRefGoogle Scholar
Carey, T. A., Griffiths, R., Dixon, J. E., & Hines, S. (2020). Identifying functional mechanisms in psychotherapy: A scoping systematic review. Frontiers in Psychiatry, 11, 291. https://doi.org/10.3389/fpsyt.2020.00291.CrossRefGoogle ScholarPubMed
Clark, D. M. (2011). Implementing NICE guidelines for the psychological treatment of depression and anxiety disorders: The IAPT experience. International Review of Psychiatry, 23(4), 318327. https://doi.org/10.3109/09540261.2011.606803.CrossRefGoogle ScholarPubMed
Clark, D. M., Canvin, L., Green, J., Layard, R., Pilling, S., & Janecka, M. (2018). Transparency about the outcomes of mental health services (IAPT approach): An analysis of public data. The Lancet, 391(10121), 679686. https://doi.org/10.1016/S0140-6736(17)32133-5.CrossRefGoogle ScholarPubMed
Cuijpers, P., Cristea, I. A., Karyotaki, E., Reijnders, M., & Hollon, S. D. (2019). Component studies of psychological treatments of adult depression: A systematic review and meta-analysis. Psychotherapy Research, 29(1), 1529. https://doi.org/10.1080/10503307.2017.1395922.CrossRefGoogle ScholarPubMed
Cuijpers, P., Cristea, I. A., Karyotaki, E., Reijnders, M., & Huibers, M. J. (2016). How effective are cognitive behavior therapies for major depression and anxiety disorders? A meta-analytic update of the evidence. World Psychiatry, 15(3), 245258. https://doi.org/10.1002/wps.20346.CrossRefGoogle ScholarPubMed
Cuijpers, P., van Straten, A., Bohlmeijer, E., Hollon, S. D., & Andersson, G. (2010). The effects of psychotherapy for adult depression are overestimated: A meta-analysis of study quality and effect size. Psychological Medicine, 40(2), 211223. doi:10.1002/wps.20701.CrossRefGoogle ScholarPubMed
Darden, M., Espie, C. A., Carl, J. R., Henry, A. L., Kanady, J. C., Krystal, A. D., & Miller, C. B. (2021). Cost-effectiveness of digital cognitive behavioral therapy (Sleepio) for insomnia: A Markov simulation model in the United States. Sleep, 44(4), zsaa223. https://doi.org/10.1093/sleep/zsaa223.CrossRefGoogle ScholarPubMed
Delgadillo, J., & Gonzalez Salas Duhne, P. (2020). Targeted prescription of cognitive–behavioral therapy versus person-centered counseling for depression using a machine learning approach. Journal of Consulting and Clinical Psychology, 88(1), 14. https://doi.org/10.1037/ccp0000476.CrossRefGoogle ScholarPubMed
Delgadillo, J., Moreea, O., & Lutz, W. (2016). Different people respond differently to therapy: A demonstration using patient profiling and risk stratification. Behaviour Research and Therapy, 79, 1522. doi:10.1016/j.brat.2016.02.003.CrossRefGoogle ScholarPubMed
Eronen, M. I. (2020). Causal discovery and the problem of psychological interventions. New Ideas in Psychology, 59, 100785. https://doi.org/10.1016/j.newideapsych.2020.100785.CrossRefGoogle Scholar
Fenn, K., & Byrne, M. (2013). The key principles of cognitive behavioural therapy. InnovAiT, 6(9), 579585. https://doi.org/10.1177/1755738012471029.CrossRefGoogle Scholar
Fried, E. I., Epskamp, S., Nesse, R. M., Tuerlinckx, F., & Borsboom, D. (2016). What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314320. https://doi.org/10.1016/j.jad.2015.09.005.CrossRefGoogle Scholar
Fried, E. I., & Nesse, R. M. (2014). The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS One, 9(2), e90311. https://doi.org/10.1371/journal.pone.0090311.CrossRefGoogle ScholarPubMed
Fried, E. I., & Nesse, R. M. (2015a). Depression sum-scores don't add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 111. https://doi.org/10.1186/s12916-015-0325-4.CrossRefGoogle ScholarPubMed
Fried, E. I., & Nesse, R. M. (2015b). Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR* D study. Journal of Affective Disorders, 172, 96102. https://doi.org/10.1016/j.jad.2014.10.010.CrossRefGoogle Scholar
Fried, E. I., Nesse, R. M., Zivin, K., Guille, C., & Sen, S. (2014). Depression is more than the sum-score of its parts: Individual DSM symptoms have different risk factors. Psychological Medicine, 44(10), 2067. doi:10.1017/S0033291713002900.CrossRefGoogle Scholar
GBD 2019 Mental Disorders Collaborators. (2022). Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Psychiatry, 11, 137150. https://doi.org/10.1016/S2215-0366(21)00395-3.Google Scholar
Green, S. A., Honeybourne, E., Chalkley, S. R., Poots, A. J., Woodcock, T., Price, G., … Green, J. (2015). A retrospective observational analysis to identify patient and treatment-related predictors of outcomes in a community mental health programme. BMJ Open, 5(5), e006103. http://doi.org/10.1136/bmjopen-2014-006103.CrossRefGoogle Scholar
Huibers, M. J., Lorenzo-Luaces, L., Cuijpers, P., & Kazantzis, N. (2021). On the road to personalized psychotherapy: A research agenda based on cognitive behavior therapy for depression. Frontiers in Psychiatry, 11, 1551. https://doi.org/10.3389/fpsyt.2020.607508.CrossRefGoogle ScholarPubMed
Jang, K. L., Livesley, W. J., Taylor, S., Stein, M. B., & Moon, E. C. (2004). Heritability of individual depressive symptoms. Journal of Affective Disorders, 80(2–3), 125133. https://doi.org/10.1016/S0165-0327(03)00108-3.CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x.CrossRefGoogle ScholarPubMed
Martin, C., Iqbal, Z., Airey, N. D., & Marks, L. (2022). Improving Access to Psychological Therapies (IAPT) has potential but is not sufficient: How can it better meet the range of primary care mental health needs? The British Journal of Clinical Psychology, 61(1), 157174. https://doi.org/10.1111/bjc.12314.CrossRefGoogle Scholar
McLennan, D., Noble, S., Noble, M., Plunkett, E., Wright, G., & Gutacker, N. (2019). The English indices of deprivation 2019: Technical report. Ministry of Housing, Communities and Local Government.Google Scholar
McMillan, D., Gilbody, S., Beresford, E., & Neilly, L. (2007). Can we predict suicide and non-fatal self-harm with the Beck Hopelessness Scale? A meta-analysis. Psychological Medicine, 37(6), 769778. doi:10.1017/S0033291706009664.CrossRefGoogle ScholarPubMed
Mundt, J. C., Marks, I. M., Shear, M. K., & Greist, J. M. (2002). The Work and Social Adjustment Scale: A simple measure of impairment in functioning. The British Journal of Psychiatry, 180(5), 461464. doi:10.1192/bjp.180.5.461.CrossRefGoogle Scholar
National Institute for Clinical Excellence. (2009). Depression in adults: Recognition and management – clinical guidelines [CG90]. National Institute for Clinical Excellence. Retrieved from https://www.nice.org.uk/guidance/cg90 (Accessed 29 January 2022).Google Scholar
National Institute for Clinical Excellence. (2011). Generalised anxiety disorder and panic disorder in adults: Management– clinical guidelines [CG113]. National Institute for Clinical Excellence. Retrieved from https://www.nice.org.uk/guidance/cg113 (Accessed 29 January 2022).Google Scholar
Nemeroff, C. B. (2020). The state of our understanding of the pathophysiology and optimal treatment of depression: Glass half full or half empty? American Journal of Psychiatry, 177(8), 671685. https://doi.org/10.1176/appi.ajp.2020.20060845.CrossRefGoogle ScholarPubMed
NHS Digital. (2021). Psychological therapies, annual report on the use of IAPT services, 2020–21. NHS Digital. Retrieved February 4, 2022, from https://digital.nhs.uk/data-and-information/publications/statistical/psychological-therapies-annual-reports-on-the-use-of-iapt-services/annual-report-2020-21#.Google Scholar
O'Driscoll, C., Buckman, J., Fried, E. I., Saunders, R., Cohen, Z. D., Ambler, G., … Pilling, S. (2021). The importance of transdiagnostic symptom level assessment to understanding prognosis for depressed adults: Analysis of data from six randomised control trials. BMC Medicine, 19(1), 109. https://doi.org/10.1186/s12916-021-01971-0.CrossRefGoogle ScholarPubMed
Panos, A., & Mavridis, D. (2020). TableOne: An online web application and R package for summarising and visualising data. Evidence-Based Mental Health, 23(3), 127130. http://doi.org/10.1136/ebmental-2020-300162.CrossRefGoogle Scholar
Paul, G. L. (1967). Strategy of outcome research in psychotherapy. Journal of Consulting Psychology, 31(2), 109. doi:10.1037/h0024436.CrossRefGoogle ScholarPubMed
R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.Google Scholar
Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3), 169188. https://doi.org/10.1023/A:1020363010465.CrossRefGoogle Scholar
Saunders, R., Buckman, J. E. J., Cape, J., Fearon, P., Leibowitz, J., & Pilling, S. (2019). Trajectories of depression and anxiety symptom change during psychological therapy. Elsevier B.V. Journal of Affective Disorders, 249, 327335. https://doi.org/10.1016/j.jad.2019.02.043.CrossRefGoogle ScholarPubMed
Saunders, R., Buckman, J. E., & Pilling, S. (2020a). Latent variable mixture modelling and individual treatment prediction. Behaviour Research and Therapy, 124, 103505. https://doi.org/10.1016/j.brat.2019.103505.CrossRefGoogle ScholarPubMed
Saunders, R., Cape, J., Leibowitz, J., Aguirre, E., Jena, R., Cirkovic, M., … Buckman, J. E. J. (2020b). Improvement in IAPT outcomes over time: Are they driven by changes in clinical practice? The Cognitive Behaviour Therapist, 13, 115. doi:10.1017/S1754470X20000173.CrossRefGoogle ScholarPubMed
Spitzer, R. L., Kroenke, K., & Williams, J. B. (2006). Generalized anxiety disorder 7-item (GAD-7) scale. Archives of Internal Medicine, 166, 10921097. doi:10.1001/archinte.166.10.1092.CrossRefGoogle Scholar
Stekhoven, D. J., & Bühlmann, P. (2012). MissForest – non-parametric missing value imputation for mixed-type data. Bioinformatics (Oxford, England), 28(1), 112118. https://doi.org/10.1093/bioinformatics/btr597.Google ScholarPubMed
University College London. (n.d.). Competency frameworks – cognitive and behavioural therapy. University College London. Retrieved from https://www.ucl.ac.uk/pals/sites/pals/files/all_problem-specific_competences.pdf (Accessed 12 February 2022).Google Scholar
Waljee, A. K., Mukherjee, A., Singal, A. G., Zhang, Y., Warren, J., Balis, U., … Higgins, P. D. (2013). Comparison of imputation methods for missing laboratory data in medicine. BMJ Open, 3(8), e002847. http://doi.org/10.1136/bmjopen-2013-002847.CrossRefGoogle ScholarPubMed
Wichniak, A., Wierzbicka, A., Walęcka, M., & Jernajczyk, W. (2017). Effects of antidepressants on sleep. Current Psychiatry Reports, 19(9), 17. https://doi.org/10.1007/s11920-017-0816-4.CrossRefGoogle ScholarPubMed
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180185. https://doi.org/10.1002/wics.147.CrossRefGoogle Scholar
Ye, Y. Y., Chen, N. K., Chen, J., Liu, J., Lin, L., Liu, Y. Z., … Jiang, X. J. (2016). Internet-based cognitive–behavioural therapy for insomnia (ICBT-i): A meta-analysis of randomised controlled trials. BMJ Open, 6(11), e010707. http://doi.org/10.1136/bmjopen-2015-010707.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bauer-Staeb et al. supplementary material

Bauer-Staeb et al. supplementary material

Download Bauer-Staeb et al. supplementary material(File)
File 33.8 KB