Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T16:19:48.084Z Has data issue: false hasContentIssue false

Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data

Published online by Cambridge University Press:  01 January 2025

Michael D. Hunter*
Affiliation:
Pennsylvania State University
Haya Fatimah
Affiliation:
University of South Florida
Marina A. Bornovalova
Affiliation:
University of South Florida
*
Correspondence should be made to Michael D. Hunter, Department of Human Development and Family Studies, Pennsylvania State University, 119 Health and Human Development Building, University Park, PA16802, USA. Email: mhunter.ou@gmail.com

Abstract

With the advent of new data collection technologies, intensive longitudinal data (ILD) are collected more frequently than ever. Along with the increased prevalence of ILD, more methods are being developed to analyze these data. However, relatively few methods have yet been applied for making long- or even short-term predictions from ILD in behavioral settings. Applications of forecasting methods to behavioral ILD are still scant. We first establish a general framework for modeling ILD and then extend that frame to two previously existing forecasting methods: these methods are Kalman prediction and ensemble prediction. After implementing Kalman and ensemble forecasts in free and open-source software, we apply these methods to daily drug and alcohol use data. In doing so, we create a simple, but nonlinear dynamical system model of daily drug and alcohol use and illustrate important differences between the forecasting methods. We further compare the Kalman and ensemble forecasting methods to several simpler forecasts of daily drug and alcohol use. Ensemble forecasts may be more appropriate than Kalman forecasts for nonlinear dynamical systems models, but further forecasting evaluation methods must be put into practice.

Type
Theory and Methods
Copyright
copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work was supported by DA032582 (NIDA)

References

Allen, P. M., Strathern, M., & Baldwin, J. (2008). Complexity: The integrating framework for models of urban and regional systems. In S. Albeverio, D. Andrey, P. Giordano, & A. Vancheri (Eds.), The dynamics of complex urban systems (pp. 21–41). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-1937-3_2 CrossRefGoogle Scholar
Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Prentice-Hall.Google Scholar
Anderson, J. L. (1996). A method for producing and evaluating probabilistic forecasts from ensemble model integrations. Journal of Climate, 9(7), 15181530. < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document} 1518:amfpae > \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document} 2.0.co;22.0.CO;2>CrossRef+\documentclass[12pt]{minimal}+\usepackage{amsmath}+\usepackage{wasysym}+\usepackage{amsfonts}+\usepackage{amssymb}+\usepackage{amsbsy}+\usepackage{mathrsfs}+\usepackage{upgreek}+\setlength{\oddsidemargin}{-69pt}+\begin{document}$$>$$\end{document}+2.0.co;2>Google Scholar
Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884–2903. < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document} 2884:aeakff > \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document} 2.0.co;22.0.CO;2>CrossRef+\documentclass[12pt]{minimal}+\usepackage{amsmath}+\usepackage{wasysym}+\usepackage{amsfonts}+\usepackage{amssymb}+\usepackage{amsbsy}+\usepackage{mathrsfs}+\usepackage{upgreek}+\setlength{\oddsidemargin}{-69pt}+\begin{document}$$>$$\end{document}+2.0.co;2>Google Scholar
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather Review, 127(12), 2741–2758. < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document} 2741:amciot > \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document} 2.0.co;22.0.CO;2>CrossRef+\documentclass[12pt]{minimal}+\usepackage{amsmath}+\usepackage{wasysym}+\usepackage{amsfonts}+\usepackage{amssymb}+\usepackage{amsbsy}+\usepackage{mathrsfs}+\usepackage{upgreek}+\setlength{\oddsidemargin}{-69pt}+\begin{document}$$>$$\end{document}+2.0.co;2>Google Scholar
Arnold, L. (1974). Stochastic differential equations: Theory and applications. John Wiley & Sons.Google Scholar
Arnold, V. I. (1973). Ordinary differential equations Cambridge, MA MIT Press Translated from the Russian by R. A. Silverman Google Scholar
Arnold, V. I. (1988). Geometrical methods in the theory of ordinary differential equations (2nd ed.). Springer.Google Scholar
Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. Cambridge University Press.Google Scholar
Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1977). Life-span developmental psychology: Introduction to research methods. Belmont, CA: Wadsworth. Google Scholar
Bar-Shalom, Y., Ti, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation. New York: Wiley. (No. 1) Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences. 191, 192213. CrossRefGoogle Scholar
Bergmeir, C., Costantini, M., & Benítez, J. M. (2014). On the usefulness of cross-validation for directional forecast evaluation. Computational Statistics & Data Analysis, 76, 132143. CrossRefGoogle Scholar
Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-validation for evaluating autoregressive time series prediction. Computational Statistics & Data Analysis, 120, 7083. CrossRefGoogle Scholar
Boker, S. M., & Laurenceau, J. P. (2006). Dynamical Systems Modeling: An Application to the Regulation of Intimacy and Disclosure in Marriage. In T. A. Walls & J. L. Schafer (Eds.), Models for Intensive Longitudinal Data (pp. 195–218). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195173444.003.0009 CrossRefGoogle Scholar
Bornovalova, M. A., Gratz, K. L., Daughters, S. B., Hunt, E. D., & Lejuez, C. (2012). Initial RCT of a distress tolerance treatment for individuals with substance use disorders. Drug and Alcohol Dependence, 122 (1–2), 7076. CrossRefGoogle ScholarPubMed
Bowen, S., Witkiewitz, K., Clifasefi, S. L., Grow, J., Chawla, N., Hsu, S. H., & Larimer, M. E. (2014). Relative Efficacy of Mindfulness-Based Relapse Prevention, Standard Relapse Prevention, and Treatment as Usual for Substance Use Disorders: A Randomized Clinical Trial. JAMA Psychiatry, 71 (5). 547556. CrossRefGoogle ScholarPubMed
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control. Revised San Francisco: Holden-Day. Google Scholar
Brockwell, P. J. (1995). A note on the embedding of discrete-time ARMA processes. Journal of Time Series Analysis, 16 (5). 451460. CrossRefGoogle Scholar
Brookner, E. (1998). Tracking and Kalman filtering made easy. New York: Wiley. CrossRefGoogle Scholar
Brooks, H. E. (2004). Tornado warning performance in the past and future: a perspective from signal detection theory. Bulletin of the American Meteorological Society, 85 (6). 837844. CrossRefGoogle Scholar
Chan, K. S., & Tong, H. (1987). A note on embedding a discrete parameter ARMA model in a continuous parameter ARMA model. Journal of Time Series Analysis, 8 (3). 277281. CrossRefGoogle Scholar
Coiffier, J. (2011). Fundamentals of numerical weather prediction. Cambridge New York: Cambridge University Press. CrossRefGoogle Scholar
Culbertson, D. S., & Sinclair, T. M. (2014). The failure of forecasts in the great recession. Challenge, 57 (6). 3445. CrossRefGoogle Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., & Vattay, G. (2017). Chaos: Classical and quantum. Copenhagen: Niels Bohr Institute. http://ChaosBook.org Google Scholar
de Jong, P. (1988). The likelihood for a state space model. Biometrika, 75 (1). 165169. CrossRefGoogle Scholar
Durbin, J. (1997). Monte carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika, 84 (3). 669684. CrossRefGoogle Scholar
Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-Gaussian observations based on state space models from both classical and bayesian perspectives. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(1), 3–56. https://doi.org/10.1111/1467-9868.00218 CrossRefGoogle Scholar
Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. Oxford University Press.Google Scholar
Edwards, C. H., & Penney, D. E. (2004). Differential equations and boundary value problems: Computing and modeling. 3 Upper Saddle River, NJ: Pearson Education. Google Scholar
Epstein, E. S. (1969). Stochastic dynamic prediction. Tellus, 21 (6). 739759. Google Scholar
Fredrickson, B. L., & Losada, M. F. (2005). Positive affect and the complex dynamics of human flourishing. American Psychologist, 60 (7). 678686. CrossRefGoogle ScholarPubMed
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19 (4). 12731302. CrossRefGoogle ScholarPubMed
Gregson, R. A. M. (1983). Time series in psychology. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Hall, P., & Heyde, C. C. (1980). Martingale limit theory and its application. New York: Academic Press.Google Scholar
Hamerle, A., Nagl, W., & Singer, H. (1991). Problems with the estimation of stochastic differential equations using structural equations models. Journal of Mathematical Sociology, 16 (3). 201220. CrossRefGoogle Scholar
Hamilton, J. D. (1994). State-space models. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics (Vol. 4, p. 3039-3080). Elsevier. http://www-stat.wharton.upenn.edu/~stine/stat910/ Google Scholar
Hannan, E. J. (1970). Multiple time series. New York: Wiley.CrossRefGoogle Scholar
Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. Springer.CrossRefGoogle Scholar
Havlicek, M., Friston, K. J., Jan, J., Brazdil, M., & Calhoun, V. D. (2011). Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering. NeuroImage, 56 (4). 21092128. CrossRefGoogle ScholarPubMed
Hayes, A. M., Laurenceau, J. P., Feldman, G., Strauss, J. L., & Cardaciotto, L. (2007). Change is not always linear: The study of nonlinear and discontinuous patterns of change in psychotherapy. Clinical Psychology Review, 27 (6). 715723. CrossRefGoogle ScholarPubMed
Haykin, S. O. (2008). Neural networks and learning machines (3rd ed.). Upper Saddle River, NJ: Pearson Education.Google Scholar
He, S. W., & Wang, J. G. (1989). On embedding a discrete-parameter ARMA model in a continuous-parameter ARMA model. Journal of Time Series Analysis, 10 (4). 315323. CrossRefGoogle Scholar
Helske, J. (2017). KFAS: Exponential family state space models in r. Journal of Statistical Software, 78(10). https://doi.org/10.18637/jss.v078.i10 CrossRefGoogle Scholar
Hirsch, M. W., & Smale, S. (1974). Differential equations, dynamical systems and bifurcations of vector fields. Academic Press.Google Scholar
Hirsch, M. W., Smale, S., & Devaney, R. (2003). Differential equations, dynamical systems, and an introduction to chaos (2nd ed.). Burlington, MA: Academic Press.Google Scholar
Hufford, M. R., Witkiewitz, K., Shields, A. L., Kodya, S., & Caruso, J. C. (2003). Relapse as a nonlinear dynamic system: Application to patients with alcohol use disorders. Journal of Abnormal Psychology, 112 (2). 219227. CrossRefGoogle ScholarPubMed
Hunter, M. D. (2018). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling: A Multidisciplinary Journal, 25 (2). 307324. CrossRefGoogle Scholar
Huzii, M. (2007). Embedding a Gaussian discrete-time autoregressive moving average process in a gaussian continuous-time autoregressive moving average process. Journal of Time Series Analysis, 28(4), 498–520. https://doi.org/10.1111/j.1467-9892.2006.00520.x CrossRefGoogle Scholar
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts.Google Scholar
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3). https://doi.org/10.18637/jss.v027.i03 CrossRefGoogle Scholar
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Basic Engineering, 82, 3545. CrossRefGoogle Scholar
Kalman, R. E. (1963). Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics. Series A (Control), 1, 152192. Google Scholar
Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Transactions of the ASME, Series D, Journal of Basic Engineering, 83, 95–108. https://doi.org/10.1115/1.3658902 CrossRefGoogle Scholar
Katzfuss, M., Stroud, J. R., & Wikle, C. K. (2016). Understanding the ensemble Kalman filter. The American Statistician, 70(4), 350–357. https://doi.org/10.1080/00031305.2016.1141709 CrossRefGoogle Scholar
Kulikov, G. Y., & Kulikova, M. V. (2014). Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Transactions on Automatic Control, 59 (1). 273279. CrossRefGoogle Scholar
Lazo, J. K., Morss, R. E., Demuth, J. L. (2009). 300 billion served. Bulletin of the American Meteorological Society, 90 (6). 785798. CrossRefGoogle Scholar
Leith, C. E. (1974). Theoretical skill of Monte Carlo forecasts. Monthly Weather Review, 102(6), 409–418. < \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<$$\end{document} 0409:tsomcf > \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>$$\end{document} 2.0.co;22.0.CO;2>CrossRef+\documentclass[12pt]{minimal}+\usepackage{amsmath}+\usepackage{wasysym}+\usepackage{amsfonts}+\usepackage{amssymb}+\usepackage{amsbsy}+\usepackage{mathrsfs}+\usepackage{upgreek}+\setlength{\oddsidemargin}{-69pt}+\begin{document}$$>$$\end{document}+2.0.co;2>Google Scholar
Li, Y., Ji, L., Oravecz, Z., Brick, T. R., Hunter, M. D., & Chow, S. M. (2019). dynr.mi: An R program for multiple imputation in dynamic modeling. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 13(5), 302–311. http://waset.org/Publicationsp=149 Google Scholar
Lipari, R. N., & Van Horn, S. L. (2017). Trends in substance use disorders among adults aged 18 or older. The CBHSQ Report,, 1–10.Google Scholar
Lucas, R. E., Wallsworth, C., Anusic, I., & Donnellan, M. B. (2020). A direct comparison of the day reconstruction method (DRM) and the experience sampling method (ESM). Journal of Personality and Social Psychology. https://doi.org/10.1037/pspp0000289 CrossRefGoogle Scholar
Maisto, S. A., Hallgren, K. A., Roos, C. R., & Witkiewitz, K. (2018). Course of remission from and relapse to heavy drinking following outpatient treatment of alcohol use disorder. Drug and Alcohol Dependence, 187, 319326. CrossRefGoogle ScholarPubMed
Mandelbrot, B. B. (1971). When can price be arbitraged efficiently A limit to the validity of the random walk and martingale models. The Review of Economics and Statistics, 53(3), 225. https://doi.org/10.2307/1937966 CrossRefGoogle Scholar
McArdle, J. J., & Epstein, D. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110133. CrossRefGoogle ScholarPubMed
McLellan, A. T., Lewis, D. C., O’Brien, C. P., & Kleber, H. D. (2000). Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. Journal of the American Medical Association, 284 (13). 16891695. CrossRefGoogle ScholarPubMed
Mischel, W. (1968). Personality and assessment. Lawrence Erlbaum.Google Scholar
Molenaar, P. C. M. (1997). Time series analysis and its relationship with longitudinal analysis. International Journal of Sports Medicine, 18 S 3 S232S237. CrossRefGoogle ScholarPubMed
Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2, 201218. Google Scholar
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., & Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 80 (2). 535549. CrossRefGoogle Scholar
Ou, L., Hunter, M. D., & Chow, S. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1). https://doi.org/10.32614/RJ-2019-012 CrossRefGoogle Scholar
Ou, L., Hunter, M. D., Lu, Z., Stifter, C. A., & Chow, S. (under review). Estimation of nonlinear mixed-effects continuous-time models using the continuous-discrete extended Kalman filter.Google Scholar
Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65 (2). 199215. CrossRefGoogle Scholar
Priestley, M., & Subba Rao, T. (1975). The estimation of factor scores and Kalman filtering for discrete parameter stationary processes. International Journal of Control, 21(6), 971–975. https://doi.org/10.1080/00207177508922050 CrossRefGoogle Scholar
R Development Core Team. (2020). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org (ISBN 3-900051-07-0)Google Scholar
Rao, C. R. (2001). Linear statistical inference (2nd ed.). John Wiley & Sons.Google Scholar
Ripberger, J. T., Silva, C. L., Jenkins-Smith, H. C., Carlson, D. E., James, M., & Herron, K. G. (2014). False alarms and missed events: The impact and origins of perceived inaccuracy in tornado warning systems. Risk Analysis, 35 (1). 4456. CrossRefGoogle ScholarPubMed
Robinson, S. M., Sobell, L. C., Sobell, M. B., & Leo, G. I. (2014). Reliability of the timeline followback for cocaine, cannabis, and cigarette use. Psychology of Addictive Behaviors, 28 (1). 154162. CrossRefGoogle ScholarPubMed
Schweppe, F. C. (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Transactions on Information Theory, IT–11, 6170. CrossRefGoogle Scholar
Simmons, K. M., & Sutter, D. (2009). False alarms, tornado warnings, and tornado casualties. Weather, Climate, and Society, 1 (1). 3853. CrossRefGoogle Scholar
Simons, J. S., Wills, T. A., Emery, N. N., & Marks, R. M. (2015). Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms. Addictive Behaviors, 50, 205212. CrossRefGoogle ScholarPubMed
Smale, S. (1961). On gradient dynamical systems. The Annals of Mathematics, 74 (1). 199 CrossRefGoogle Scholar
Sobell, L. C., Agrawal, S., Annis, H., Ayala-Velazquez, H., Echeverria, L., Leo, G. I., & Ziólkowski, M. (2001). Cross-cultural evaluation of two drinking assessment instruments: Alcohol timeline followback and inventory of drinking situations. Substance Use & Misuse, 36(3), 313–331. https://doi.org/10.1081/ja-100102628 CrossRefGoogle Scholar
Squire, P. (1988). Why the 1936 Literary Digest poll failed. Public Opinion Quarterly, 52 (1). 125CrossRefGoogle Scholar
Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E. M., Breakspear, M., & Friston, K. J. (2008). Nonlinear dynamic causal models for fMRI. NeuroImage, 42 (2). 649662. CrossRefGoogle ScholarPubMed
Substance Abuse and Mental Health Services Administration. (2018). Key substance use and mental health indicators in the United States: Results from the 2017 National Survey on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. [2020-04-16]https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHFFR2017/NSDUHFFR2017.pdf Google Scholar
Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23 (3). 395404. CrossRefGoogle Scholar
Warner, T. T. (2014). Numerical weather and climate prediction. Cambridge University Press.Google Scholar
West, M., & Harrison, P. (1997). Bayesian forecasting and dynamic models. New York: Springer.Google Scholar
Witkiewitz, K., & Marlatt, G. A. (2004). Relapse prevention for alcohol and drug problems: That was Zen, this is Tao. American Psychologist, 59 (4). 224235. CrossRefGoogle ScholarPubMed