Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T13:19:42.310Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 August 2023

Paul A. Vanden Bout
Affiliation:
National Radio Astronomy Observatory, Virginia
Robert L. Dickman
Affiliation:
National Radio Astronomy Observatory, Virginia
Adele L. Plunkett
Affiliation:
National Radio Astronomy Observatory, Virginia

Summary

Type
Chapter
Information
The ALMA Telescope
The Story of a Science Mega-Project
, pp. 251 - 255
Publisher: Cambridge University Press
Print publication year: 2023
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

References

Abe, K., Tsutsumi, J., and Hiyama, T. 2014, ACA Correlator System: Supercomputer System Developed for ALMA Project, FUJITSU Sci. Tech. J., 50, 35Google Scholar
Akiyama, K., et al. 2019, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, ApJL, 875, L1Google Scholar
Akiyama, K., et al. 2021, First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure Near the Event Horizon, ApJL, 910, L13Google Scholar
ALMA Partnership, et al. 2015, The 2014 ALMA Long Baseline Campaign: First Results from High Angular Resolution Observations toward the HL Tau Region, ApJL, 808, L3Google Scholar
Ando, R., et al. 2017, Diverse Nuclear Star-Forming Activities in the Heart of NGC 253 Resolved with 10-pc-Scale ALMA Images, ApJ, 849, 81CrossRefGoogle Scholar
Andrews, S. M., et al. 2018, The Disk Substructures High Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview, ApJL, 869, L41CrossRefGoogle Scholar
Baars, J. W. M., et al. 2007, Near-Field Radio Holography of Large Reflector Antennas, IEEE Antennas Propag. Mag., 49, 24CrossRefGoogle Scholar
Bae, J., et al. 2022, Molecules with ALMA at Planet-forming Scales (MAPS): A Circumplanetary Disk Candidate in Molecular-line Emission in the AS209 Disk, ApJL, 934, L20CrossRefGoogle Scholar
Bastian, T. S., et al. 2017, A First Comparison of Millimeter Continuum and Mg II Ultraviolet Line Emission from the Solar Chromosphere, ApJL, 845, L19CrossRefGoogle Scholar
Baudry, A., et al. 2012, Performance Highlights of the ALMA Correlators. In SPIE Proc. 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, ed. Holland, W. S. (Bellingham, WA: SPIE), 8452-17Google Scholar
Berman, D. A., et al. 2022, PASSAGES: The Large Millimeter Telescope and ALMA Observations of Extremely Luminous High Redshift Galaxies Identified by the Planck, MNRAS, 515, 3911CrossRefGoogle Scholar
Bok, B. and Reilly, E. F. 1947, Small Dark Nebulae, ApJ, 105, 25CrossRefGoogle Scholar
Booth, R. S. 1994, A Southern Hemisphere Millimeter Array. In ASPC 59, Astronomy with Millimeter and Submillimeter Wave Interferometry, IAU Colloquium 140, ed. Ishiguro, M. and Welch, W. J. (San Francisco: ASP), 413Google Scholar
Booth, R. S. 1997, European Plans for a Millimetre Array. In IAU Symposium No. 170, CO: Twenty-Five Years of Millimeter-Wave Spectroscopy, ed. Latter, W. B. et al. (Dordrecht: Kluwer), 231CrossRefGoogle Scholar
Brogan, C., et al. 2019, A Science-Driven Vision for ALMA in the 2030s, BAAS, 51, 7Google Scholar
Brown, R. L. 1997, New Instruments, New Science: Future Opportunities. In IAU Symposium No. 170, CO: Twenty-Five Years of Millimeter-Wave Spectroscopy, ed. Latter, W. B. et al. (Dordrecht: Kluwer), 247CrossRefGoogle Scholar
Brown, R. L., and Vanden Bout, P. A. 1991, CO Emission at z=2.2867 in the Galaxy IRAS F10214+4724, AJ, 102, 1956.CrossRefGoogle Scholar
Carpenter, J. M., et al. 2022, Update on the Systematics in the ALMA Proposal Review Process after Cycle 8, PASP, 134, 1CrossRefGoogle Scholar
Chavez-Dagostino, M., et al. 2016, Early Science with the Large Millimetre Telescope: Deep LMT/AzTEC Millimetre Observations of ε Eridani and Its Surroundings, MNRAS, 462, 2285CrossRefGoogle Scholar
Chu, T. S., et al. 1978, The Crawford Hill 7-Meter Millimeter Antenna, Bell Syst. Tech. J., 57, 1257CrossRefGoogle Scholar
Crease, R. P. 1990, Millimeter Scientists Push for New Telescope, Science, 249, 1504CrossRefGoogle Scholar
Dame, T. M., et al. 1987, A Composite CO Survey of the Entire Milky Way, ApJ, 332, 706CrossRefGoogle Scholar
Dame, T. M., and Thaddeus, P. 2022, A CO Survey of the Entire Northern Sky, ApJS, 262, 5CrossRefGoogle Scholar
David, P. 1983, Millimetre Wave Astronomy: US Could Be Left Behind, Nature, 303, 7CrossRefGoogle Scholar
Delannoy, J., Lacroix, J., and Blum, E. J. 1973, An 8-mm Interferometer for Solar Radio Astronomy at Bordeaux, France, Proc. IEEE, 61, 1282CrossRefGoogle Scholar
Dickman, R. L. 1978, The Ratio of Carbon Monoxide to Molecular Hydrogen in Interstellar Dark Clouds, ApJS, 37, 407CrossRefGoogle Scholar
Dickman, R. L., McCutcheon, W. H., and Shuter, W. L. H. 1979, Carbon Monoxide Isotope Fractionation in the Dust Cloud L134, ApJ, 234, 100CrossRefGoogle Scholar
Donovan Meyer, J., et al. 2022, Analysis of the ALMA Cycle-8 Distributed Review Process, BAAS, 54, 1Google Scholar
Downes, D. 1994, New Directions for Millimeter Astronomy in the 21st Century. In Frontiers of Space and Ground-Based Astronomy 1994, ed. Wamsteker, W., Longair, M. S., and Kondo, Y. (Dordrecht: Kluwer), 133CrossRefGoogle Scholar
Drake, F., and Sobel, D. 1994, Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence (New York: Delecourt)Google Scholar
Escoffier, R. P., et al. 2007, The ALMA Correlator, A&A, 462, 801Google Scholar
Fudamoto, Y., et al. 2021, Normal, Dust-obscured Galaxies in the Epoch of Reionization, Nature, 597, 489CrossRefGoogle ScholarPubMed
Gordon, M. A. 2005, Recollections of “Tucson Operations”: The Millimeter-Wave Observatory of the National Radio Astronomy Observatory (Dordrecht: Springer)Google Scholar
Herrera, C. N., et al. 2012, ALMA CO and VLT/SINFONI H2 Observations of the Antennae Overlap Region: Mass and Energy Dissipation, A&A, 538, L9Google Scholar
Herzberg, G. 1988, Historical Remarks on the Discovery of Interstellar Molecules, JRASC, 82, 115Google Scholar
Hills, R. E., et al. 1972, Interferometric Positions of the Water-Vapor Emission Sources in HII Regions, ApJL, 175, L59CrossRefGoogle Scholar
Hills, R. E., et al. 1973, The Hat Creek Millimeter Wave Interferometer, Proc. IEEE, 61, 127CrossRefGoogle Scholar
Iguchi, S., et al. 2009, The ALMA Compact Array (ACA), PASJ, 61, 1CrossRefGoogle Scholar
Ishiguro, M., et al. 1994, The Large Millimeter Array. In ASPC 59, Astronomy with Millimeter and Submillimeter Wave Interferometry, IAU Colloquium 140, ed. Ishiguro, M. and Welch, W. J. (San Francisco: ASP), 405Google Scholar
Ishiguro, M. 1997, LMSA: Japanese Plans for a Large Millimeter and Submillimeter Array. In IAU Symposium No. 170, CO: Twenty-Five Years of Millimeter-Wave Spectroscopy, ed. Latter, W. B. et al. (Dordrecht: Kluwer), 239CrossRefGoogle Scholar
Ishiguro, M., and the LMSA Working Group. 1998, Japanese Large Millimeter and Submillimeter Array. In SPIE Proc. 3357, Advanced Technology MMW, Radio and Terahertz Telescopes, ed. Phillips, T. G. (Bellingham, WA: SPIE), 244CrossRefGoogle Scholar
Ishiguro, M. 2009, ALMA Radio Telescope (Tokyo: Chikumashobo) [in Japanese]Google Scholar
Ishiguro, M., Chiba, K., and Sakamoto, S. 2022, From Nobeyama Radio Observatory to the International Project ALMA: Evolution of Millimeter and Submillimeter Wave Astronomy in Japan, PJAB, 98, 439Google Scholar
Iwai, K., et al. 2017, ALMA Discovery of Solar Umbral Brightness Enhancement at λ=3 mm, ApJL, 841, L20CrossRefGoogle Scholar
Janssen, M., et al. 2021, Event Horizon Telescope Observations of the Jet Launching and Collimation in Centaurus A, Nature Astronomy, 5, 1017CrossRefGoogle Scholar
Jorgensen, J. K., et al. 2016, The ALMA Protostellar Interferometric Line Survey (PILS). First Results from an Unbiased Submillimeter Wavelength Line Survey of the Class 0 Protostellar Binary IRAS 16293-2422 with ALMA, A&A, 595, A117Google Scholar
Kellermann, K. I., Bouton, E. N., and Brandt, S. S. 2020, Open Skies: The National Radio Astronomy Observatory and Its Impact on US Radio Astronomy (Cham: Springer)CrossRefGoogle Scholar
Kellermann, K. I., and Bouton, E. N. 2023, Star Noise: Discovering the Radio Universe (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Koda, J., et al. 2009, Dynamically Driven Evolution of the Interstellar Medium in M51, ApJL, 700, L132CrossRefGoogle Scholar
Kono, K., et al. 1995, Preliminary Result of Site Testing in Northern Chile with a Portable 220 GHz Radiometer, NRO Technical Report, No. 42Google Scholar
Kwon, W., Looney, L. W., and Mundy, L. G. 2011, Resolving the Circumstellar Disk in HL Tauri at Millimeter Wavelengths, ApJ, 741, 3CrossRefGoogle Scholar
Latter, W. B., et al., eds. 1997, IAU Symposium No. 170, CO: Twenty-Five Years of Millimeter-Wave Spectroscopy (Dordrecht: Kluwer)CrossRefGoogle Scholar
Ligterink, N. F. W., et al. 2017, The ALMA-PILS Survey: Detection of CH3NCO Towards the Low-Mass Protostar IRAS 16293-2422 and Laboratory Constraints on its Formation, MNRAS, 469, 2219CrossRefGoogle Scholar
Lis, D. C., et al. 2002, The Role of Outflows and C Shocks in the Strong Deuteration of L1689, ApJ, 571, L5Google Scholar
Loukitcheva, M. A. 2019, First Solar Observations with ALMA, ASR, 63, 1396Google Scholar
Loukitcheva, M. A., et al. 2017, Solar ALMA Observations: Constraining the Chromosphere above Sunspots, ApJ, 850, 35CrossRefGoogle Scholar
Lynds, B. 1962, Catalog of Dark Nebulae, ApJS, 7, 1CrossRefGoogle Scholar
Madsen, K. 2012, The Jewel on the Mountaintop (Berlin: Wiley CVH)Google Scholar
Mangum, J. G., et al. 2006, Evaluation of the ALMA Prototype Antennas, PASP, 118, 1257CrossRefGoogle Scholar
Martín-Doménech, R., et al. 2017, Detection of Methyl Isocyanate (CH3NCO) in a Solar-Type Protostar, MNRAS, 469, 2230CrossRefGoogle Scholar
McGuire, B. A. 2022, 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules, ApJS, 259, 30CrossRefGoogle Scholar
Otárola, A., Delgado, G., and Bååth, L. 1995, Site Survey for a Large Southern Array. In Science with Large Millimeter Arrays, ed. Shaver, P. A. (Dordrecht: Springer), 358Google Scholar
Paulikas, G. A. 1976, The Aerospace Corp., El Segunda, California. Observatory Report, BAAS, 8, 1Google Scholar
Peek, K. 2017, Long Live Hubble, Sci. Amer., 316, 80Google ScholarPubMed
Phillips, T. G. 2009, Development of the Submillimeter Band. In ASPC 417, Submillimeter Astrophysics and Technology: A Symposium Honoring Thomas G. Phillips, ed. Lis, D. C. et al. (San Francisco: ASP), 37Google Scholar
Plambeck, R. L. 2006, The Legacy of the BIMA Millimeter Array. In ASPC 356, Revealing the Molecular Universe: One Antenna Is Never Enough, ed. Backer, D. C., Turner, J. L., and Moran, J. M. (San Francisco: ASP), 3Google Scholar
Pun, M., et al. 2018, Effects on Cognitive Functioning of Acute, Subacute and Repeated Exposures to High Altitude, Front. Physiol., 9, 1131CrossRefGoogle ScholarPubMed
Radford, S. J. E., et al. 1996, Resolution of the Discrepancy in the CO(3-2) Flux of IRAS F10214+4724, AJ, 111, 1021CrossRefGoogle Scholar
Rizzo, F., et al. 2020, A Dynamically Cold Disk Galaxy in the Early Universe, Nature, 584, 201CrossRefGoogle ScholarPubMed
Rodriguez, L. F., et al. 1980, Anisotropic Mass Outflow in Cepheus A, ApJ, 240, L149CrossRefGoogle Scholar
Sakamoto, S., 2001, Comparison of the Pampa La Bola and Llano de Chajnantor Sites in Northern Chile. In ASPC, 266, Astronomical Site Evaluation in the Optical and Radio Range, ed. Vernin, J., Benkahldun, Z., and Muñoz-Tuñón, C. (San Francisco: ASP), 440Google Scholar
Sargent, A. I. 1977, Molecular Clouds and Star Formation. I. Observations of the Cepheus OB3 Molecular Cloud, ApJ, 218, 736CrossRefGoogle Scholar
Sargent, A. I., and Beckwith, S. 1987, Kinematics of the Circumstellar Gas of HL Tauri & R Monocerotis, ApJ, 323, 294CrossRefGoogle Scholar
Schnee, S. L., et al. 2014, The Human Pipeline: Distributed Data Reduction for ALMA. In Proc. SPIE, 9149, Observatory Operations: Strategies, Processes, and Systems V, ed. Peck, A. B., Benn, C. R., and Seaman, R. L. (Bellingham, WA: SPIE), 9149–0ZGoogle Scholar
Scoville, N. Z., et al. 1986, Millimeter Interferometry of the Molecular Gas in Arp 220, ApJL, 311, L47CrossRefGoogle Scholar
Sekimoto, Y., et al. 2000, The Mt. Fuji Submillimeter-wave Telescope. In Proc. SPIE 4015, Radio Telescopes, ed. Butcher, H. (Bellingham, WA: SPIE), 185CrossRefGoogle Scholar
Shaver, P. A., 1986, Science with Large Millimetre Arrays (Berlin: Springer)Google Scholar
Shillue, B., et al. 2012, The ALMA Photonic Local Oscillator System. In Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, ed. Holland, W. S. (Bellingham, WA: SPIE), 8452–16Google Scholar
Shimojo, M., et al. 2017, The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point, ApJL, 841, L5CrossRefGoogle Scholar
Snell, R. L., Loren, R. B., and Plambeck, R. L. 1980, Observations of CO in L1551: Evidence for Stellar Wind Driven Shocks, ApJ, 239, L17CrossRefGoogle Scholar
Snyder, L. E., et al. 1969, Microwave Detection of Interstellar Formaldehyde, PhRvL, 22, 679Google Scholar
Solomon, P. M., Downes, D., and Radford, S. J. E. 1992, Warm Molecular Gas in the Primeval Galaxy IRAS 10214 +4724, ApJL, 398, L29CrossRefGoogle Scholar
Solomon, P. M., and Wickramasinghe, N. C. 1969, Molecular and Solid Hydrogen in Dense Interstellar Clouds, ApJ, 158, 449CrossRefGoogle Scholar
Stark, A., et al. 1988, The Bell Laboratories CO Survey. In LNP 315, Molecular Clouds in the Milky Way and External Galaxies, ed. Dickman, R., Snell, R., and Young, J. (Heidelberg: Springer), 303CrossRefGoogle Scholar
Townes, C. H. 1957, Microwave and Radio-Frequency Resonance Lines of Interest to Radio Astronomy. In IAU Symposium No. 4, Radio Astronomy, ed. van de Hulst, H. C. (Dordrecht: Reidel), 92Google Scholar
Townes, C. H. 2006, The Discovery of Interstellar Water Vapor and Ammonia at the Hat Creek Radio Observatory. In ASPC 356, Revealing the Molecular Universe: One Antenna Is Never Enough, ed. Backer, D. C., Turner, J. L., and Moran, J. M. (San Francisco: ASP), 81Google Scholar
Tsukui, T., and Iguchi, S. 2021, Spiral Morphology in an Intensely Star-Forming Disk Galaxy More Than 12 Billion Years Ago, Science, 372, 1201CrossRefGoogle Scholar
Ukita, N., et al. 2004, Design and Performance of the ALMA-J Prototype Antenna. In Proc. SPIE 5489, Ground-based Telescopes, ed. Oschman, J. M., Jr. (Bellingham WA: SPIE), 1089Google Scholar
Vanden Bout, P. A. 2005, Origins of the ALMA Project in the Scientific Visions of the North American, European, and Japanese Astronomical Communities. In ESA SP-577, The Dusty and Molecular Universe, ed. Wilson, A. (Noordwijk: ESA), 23Google Scholar
Vanden Bout, P. A., Davis, J. H., and Loren, R. B. 2012, The University of Texas Millimeter Wave Observatory, JAHH, 15, 232Google Scholar
Waldrop, M. M. 1983, Astronomers Ponder a Catch-22, Science, 220, 698CrossRefGoogle Scholar
Walter, F., et al. 2016, ALMA Spectroscopic Survey in the Hubble Deep Field: Survey Description, ApJ, 833, 67CrossRefGoogle Scholar
Wedemeyer, S., et al. 2020, The Sun at Millimeter Wavelengths. I. Introduction to ALMA Band 3 Observations, A&A, 635, A71Google Scholar
Weinreb, S., et al. 1963, Radio Observations of OH in the Interstellar Medium, Nature, 200, 829CrossRefGoogle Scholar
Welch, W. J. 1996, The Berkeley-Illinois-Maryland Association Millimeter Array, PASP, 108, 93CrossRefGoogle Scholar
Wilson, R. W., Jefferts, K. B., and Penzias, A. A. 1970, Carbon Monoxide in the Orion Nebula, ApJ, 161, L43CrossRefGoogle Scholar
Wilson, R. W. 2008, Discovering CO and Other Interstellar Molecules with the NRAO 36 Foot Antenna. In ASPC 395, Frontiers of Astrophysics: A Celebration of NRAO’s 50th Anniversary, ed. Bridle, A. H., Condon, J. J., and Hunt, G. C. (San Francisco: ASP), 183Google Scholar
Wilson, R. W. 2015, The Discovery of Interstellar CO. In 26th International Symposium On Space Terahertz Technology, W1-1 [www.nrao.edu/meetings/isstt/papers/2015/2015000034.pdf]Google Scholar
Woody, D., Vail, D., and Schall, W. 1994, Design, Construction, and Performance of the Leighton 10.4-m- diameter Radio Telescopes, Proc. IEEE, 82, 673CrossRefGoogle Scholar
Woody, D., et al. 2004, CARMA: A New Heterogeneous Millimeter Wave Interferometer. In Proc. SPIE 5498, Millimeter and Submillimeter Detectors for Astronomy II, ed. Zmuidzinas, J., Holland, W. S., and Withington, S. (Bellingham WA: SPIE), 30CrossRefGoogle Scholar
Wootten, A., and Thompson, A. R. 2009, The Atacama Large Millimeter/submillimeter Array, Proc. IEEE, 97, 1463CrossRefGoogle Scholar
Yamane, K. 2017, Creators of the Super Telescope “ALMA” (Konsarutingu: Nikkei BP) [in Japanese]Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Paul A. Vanden Bout, National Radio Astronomy Observatory, Virginia, Robert L. Dickman, National Radio Astronomy Observatory, Virginia, Adele L. Plunkett, National Radio Astronomy Observatory, Virginia
  • Book: The ALMA Telescope
  • Online publication: 03 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009279727.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Paul A. Vanden Bout, National Radio Astronomy Observatory, Virginia, Robert L. Dickman, National Radio Astronomy Observatory, Virginia, Adele L. Plunkett, National Radio Astronomy Observatory, Virginia
  • Book: The ALMA Telescope
  • Online publication: 03 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009279727.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Paul A. Vanden Bout, National Radio Astronomy Observatory, Virginia, Robert L. Dickman, National Radio Astronomy Observatory, Virginia, Adele L. Plunkett, National Radio Astronomy Observatory, Virginia
  • Book: The ALMA Telescope
  • Online publication: 03 August 2023
  • Chapter DOI: https://doi.org/10.1017/9781009279727.017
Available formats
×