Published online by Cambridge University Press: 08 October 2021
By now there is a solid theory for Polya urns. Finding the covariances is somewhat laborious. While these papers are “structural,” our purpose here is “computational.” We propose a practicable method for building the asymptotic covariance matrix in tenable balanced urn schemes, whereupon the asymptotic covariance matrix is obtained by solving a linear system of equations. We demonstrate the use of the method in growing tenable balanced irreducible schemes with a small index and in critical urns. In the critical case, the solution to the linear system of equations is explicit in terms of an eigenvector of the scheme.
To Robert Smythe, a mentor, coauthor and friend, on his 80th birthday
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.