Published online by Cambridge University Press: 12 May 2022
Conditional on the extended Riemann hypothesis, we show that with high probability, the characteristic polynomial of a random symmetric
$\{\pm 1\}$
-matrix is irreducible. This addresses a question raised by Eberhard in recent work. The main innovation in our work is establishing sharp estimates regarding the rank distribution of symmetric random
$\{\pm 1\}$
-matrices over
$\mathbb{F}_p$
for primes
$2 < p \leq \exp(O(n^{1/4}))$
. Previously, such estimates were available only for
$p = o(n^{1/8})$
. At the heart of our proof is a way to combine multiple inverse Littlewood–Offord-type results to control the contribution to singularity-type events of vectors in
$\mathbb{F}_p^{n}$
with anticoncentration at least
$1/p + \Omega(1/p^2)$
. Previously, inverse Littlewood–Offord-type results only allowed control over vectors with anticoncentration at least
$C/p$
for some large constant
$C > 1$
.
Supported in part by NSF grants DMS-1954395 and DMS-1953799.
Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.