Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T00:06:53.843Z Has data issue: false hasContentIssue false

Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices

Published online by Cambridge University Press:  14 January 2013

Hanying Li
Affiliation:
State Key Laboratory of Silicon Materials and Department of Polymer Science and Engineering, Zhejiang University, China; hanying_li@zju.edu.cn
Gaurav Giri
Affiliation:
Department of Chemical Engineering, Stanford University; ggiri@stanford.edu
Jeffrey B.-H. Tok
Affiliation:
Department of Chemical Engineering, Stanford University; jbtok@stanford.edu
Zhenan Bao
Affiliation:
Department of Chemical Engineering, Stanford University; zbao@stanford.edu
Get access

Abstract

High-mobility organic field-effect transistors (OFETs) are the basic units for a variety of high-performance electronic applications. Here, we review recent progress in controlling molecular packing and crystal growth in high-mobility, small molecular organic FETs. Strategies to tune molecular packing of organic semiconductors and their impact on charge transport are described. Methods for the controlled growth of single-crystal organic semiconductors required for large-area device construction are reviewed. Furthermore, the advantages, limitations, and potential of these methods are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sekitani, T., Zschieschang, U., Klauk, H., Someya, T., Nat. Mater. 9, 1015 (2010).Google Scholar
Yan, H., Chen, Z.H., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., Kastler, M., Facchetti, A., Nature 457, 679 (2009).Google Scholar
Klauk, H., Zschieschang, U., Pflaum, J., Halik, M., Nature 445, 745 (2007).Google Scholar
Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E., Li, W., Nature 403, 521 (2000).Google Scholar
Gelinck, G.H., Huitema, H.E.A., Van Veenendaal, E., Cantatore, E., Schrijnemakers, L., Van der Putten, J., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., Van Rens, B.J.E., De Leeuw, D.M., Nat. Mater. 3, 106 (2004).Google Scholar
Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).Google Scholar
Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.N., Nat. Mater. 9, 859 (2010).Google Scholar
Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T., Science 326, 1516 (2009).Google Scholar
Roberts, M.E., Sokolov, A.N., Bao, Z.N., J. Mater. Chem. 19, 3351 (2009).Google Scholar
Sokolov, A.N., Roberts, M.E., Johnson, O.B., Cao, Y.D., Bao, Z.N., Adv. Mater. 22, 2349 (2010).Google Scholar
Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).Google Scholar
Tsumura, A., Koezuka, H., Ando, T., Appl. Phys. Lett. 49, 1210 (1986).Google Scholar
Mitsui, C., Soeda, J., Miwa, K., Tsuji, H., Takeya, J., Nakamura, E., J. Am. Chem. Soc. 134, 5448 (2012).Google Scholar
Lv, A., Puniredd, S.R., Zhang, J., Li, Z., Zhu, H., Jiang, W., Dong, H., He, Y., Jiang, L., Li, Y., Pisula, W., Meng, Q., Hu, W., Wang, Z., Adv. Mater. 24, 2626 (2012).Google Scholar
Oh, J.H., Lee, H.W., Mannsfeld, S., Stoltenberg, R.M., Jung, E., Jin, Y.W., Kim, J.M., Yoo, J.B., Bao, Z.N., Proc. Natl. Acad. Sci. U.S.A. 106, 6065 (2009).Google Scholar
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).Google Scholar
Molinari, A.S., Alves, H., Chen, Z., Facchetti, A., Morpurgo, A.F., J. Am. Chem. Soc. 131, 2462 (2009).Google Scholar
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar
Nakayama, K., Hirose, Y., Soeda, J., Yoshizumi, M., Uemura, T., Uno, M., Li, W., Kang, M., Yamagishi, M., Okada, Y., Miyazaki, E., Nakazawa, Y., Nakao, A., Takimiya, K., Takeya, J., Adv. Mater. 23, 1626 (2011).Google Scholar
Jurchescu, O.D., Popinciuc, M., van Wees, B.J., Palstra, T.T.M., Adv. Mater. 19, 688 (2007).Google Scholar
Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., Ogawa, S., Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
Menard, E., Podzorov, V., Hur, S.H., Gaur, A., Gershenson, M.E., Rogers, J.A., Adv. Mater. 16, 2097 (2004).Google Scholar
Reese, C., Bao, Z.N., Mater. Today 10, 20 (2007).Google Scholar
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., Hasegawa, T., Nature 475, 364 (2011).Google Scholar
Islam, M.M., Pola, S., Tao, Y.T., Chem. Commun. 47, 6356 (2011).Google Scholar
Kim, D.H., Lee, D.Y., Lee, H.S., Lee, W.H., Kim, Y.H., Han, J.I., Cho, K., Adv. Mater. 19, 678 (2007).Google Scholar
Anthopoulos, T.D., Singh, B., Marjanovic, N., Sariciftci, N.S., Ramil, A.M., Sitter, H., Colle, M., de Leeuw, D.M., Appl. Phys. Lett. 89, 213504 (2006).Google Scholar
Shukla, D., Nelson, S.F., Freeman, D.C., Rajeswaran, M., Ahearn, W.G., Meyer, D.M., Carey, J.T., Chem. Mater. 20, 7486 (2008).Google Scholar
Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., Müllen, K.. J. Am. Chem. Soc. 133, 2605 (2011).Google Scholar
Wang, C.-H., Hsieh, C.-Y., Hwang, J.-C., Adv. Mater. 23, 1630 (2011).Google Scholar
Li, H.Y., Tee, B.C.K., Cha, J.J., Cui, Y., Chung, J.W., Lee, S.Y., Bao, Z.N., J. Am. Chem. Soc. 134, 2760 (2012).Google Scholar
Coropceanu, V., Cornil, J., da Silva, D.A., Olivier, Y., Silbey, R., Bredas, J.L., Chem. Rev. 107, 926 (2007).Google Scholar
Kang, J.H., da Silva, D., Bredas, J.L., Zhu, X.Y., Appl. Phys. Lett. 86, 152115 (2005).Google Scholar
Bredas, J.L., Calbert, J.P., da Silva, D.A., Cornil, J., Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002).Google Scholar
Troisi, A., Chem. Soc. Rev. 40, 2347 (2011).Google Scholar
Solomon, G.C., Herrmann, C., Vura-Weis, J., Wasielewski, M.R., Ratner, M.A., J. Am. Chem. Soc. 132, 7887 (2010).Google Scholar
Jung, B.J., Tremblay, N.J., Yeh, M.L., Katz, H.E., Chem. Mater. 23, 568 (2011).Google Scholar
Oh, J.H., Suraru, S.L., Lee, W.Y., Konemann, M., Hoffken, H.W., Roger, C., Schmidt, R., Chung, Y., Chen, W.C., Wurthner, F., Bao, Z.N., Adv. Funct. Mater. 20, 2148 (2010).Google Scholar
Goetz, K.P., Li, Z., Ward, J.W., Bougher, C., Rivnay, J., Smith, J., Conrad, B.R., Parkin, S.R., Anthopoulos, T.D., Salleo, A., Anthony, J.E., Jurchescu, O.D., Adv. Mater. 23, 3698 (2011).Google Scholar
Payne, M.M., Parkin, S.R., Anthony, J.E., Kuo, C.C., Jackson, T.N., J. Am. Chem. Soc. 127, 4986 (2005).Google Scholar
Takimiya, K., Shinamura, S., Osaka, I., Miyazaki, E., Adv. Mater. 23, 4347 (2011).Google Scholar
Anthony, J.E., Eaton, D.L., Parkin, S.R., Org. Lett. 4, 15 (2002).Google Scholar
Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., Weber, W., J. Appl. Phys. 92, 5259 (2002).Google Scholar
Jurchescu, O.D., Baas, J., Palstra, T.T.M., Appl. Phys. Lett. 84, 3061 (2004).Google Scholar
Anthony, J.E., Brooks, J.S., Eaton, D.L., Parkin, S.R., J. Am. Chem. Soc. 123, 9482 (2001).Google Scholar
Liu, Y.-Y., Song, C.-L., Zeng, W.-J., Zhou, K.-G., Shi, Z.-F., Ma, C.-B., Yang, F., Zhang, H.-L., Gong, X., J. Am. Chem. Soc. 132, 16349 (2010).Google Scholar
Yoshida, H., Sato, N., Phys. Rev. B 77, 235205 (2008).Google Scholar
Mannsfeld, S.C.B., Tang, M.L., Bao, Z.N., Adv. Mater. 23, 127 (2011).Google Scholar
Tang, M.L., Oh, J.H., Reichardt, A.D., Bao, Z.N., J. Am. Chem. Soc. 131, 3733 (2009).Google Scholar
Anthony, J.E., Chem. Rev. 106, 5028 (2006).Google Scholar
Anthony, J.E., Facchetti, A., Heeney, M., Marder, S.R., Zhan, X., Adv. Mater. 22, 3876 (2010).Google Scholar
Moon, H., Zeis, R., Borkent, E.J., Besnard, C., Lovinger, A.J., Siegrist, T., Kloc, C., Bao, Z.N., J. Am. Chem. Soc. 126, 15322 (2004).Google Scholar
Gsanger, M., Oh, J.H., Konemann, M., Hoffken, H.W., Krause, A.M., Bao, Z.N., Wurthner, F., Angew. Chem., Int. Ed. 49, 740 (2010).Google Scholar
Reese, C., Roberts, M.E., Parkin, S.R., Bao, Z.N., Adv. Mater. 21, 3678 (2009).Google Scholar
Sokolov, A.N., PhD thesis, University of Iowa (2007).Google Scholar
Che, C.M., Chow, C.F., Yuen, M.Y., Roy, V.A.L., Lu, W., Chen, Y., Chui, S.S.Y., Zhu, N.Y., Chem. Sci. 2, 216 (2011).Google Scholar
Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z.Y., McIntyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y., IEEE Electron Device Lett. 25, 191 (2004).Google Scholar
Opitz, A., Ecker, B., Wagner, J., Hinderhofer, A., Schreiber, F., Manara, J., Pflaum, J., Brutting, W., Org. Electron. 10, 1259 (2009).Google Scholar
Salzmann, I., Duhm, S., Heimel, G., Oehzelt, M., Kniprath, R., Johnson, R.L., Rabe, J.P., Koch, N., J. Am. Chem. Soc. 130, 12870 (2008).Google Scholar
Vogel, J.O., Salzmann, I., Opitz, R., Duhm, S., Nickel, B., Rabe, J.P., Koch, N., J. Phys. Chem. B 111, 14097 (2007).Google Scholar
Cosseddu, P., Vogel, J.O., Fraboni, B., Rabe, J.P., Koch, N., Bonfiglio, A., Adv. Mater. 21, 344 (2009).Google Scholar
Huang, L., Liu, C., Qiao, X., Tian, H., Geng, Y., Yan, D., Adv. Mater. 23, 3455 (2011).Google Scholar
Mattheus, C.C., de Wijs, G.A., de Groot, R.A., Palstra, T.T.M., J. Am. Chem. Soc. 125, 6323 (2003).Google Scholar
Mannsfeld, S.C.B., Virkar, A., Reese, C., Toney, M.F., Bao, Z.N., Adv. Mater. 21, 2294 (2009).Google Scholar
Yoshimoto, S., Kobayashi, N., Supramolecular Nanostructures of Phthalocyanines and Porphyrins at Surfaces Based on the “Bottom-Up Assembly” (Springer, Berlin/Heidelberg, 2010).Google Scholar
Bonifazi, D., Kiebele, A., Stohr, M., Cheng, F.Y., Jung, T., Diederich, F., Spillmann, H., Adv. Funct. Mater. 17, 1051 (2007).Google Scholar
Chen, Q., McDowall, A.J., Richardson, N.V., Chem. Mater. 15, 4113 (2003).Google Scholar
Chen, T., Pan, G.-B., Yan, H.-J., Wan, L.-J., Matsuo, Y., Nakamura, E., J. Phys. Chem. C 114, 3170 (2010).Google Scholar
Fendrich, M., Wagner, T., Stohr, M., Moller, R., Phys. Rev. B 73, 115433 (2006).Google Scholar
Wakayama, Y., de Oteyza, D.G., Garcia-Lastra, J.M., Mowbray, D.J., ACS Nano 5, 581 (2011).Google Scholar
de Wild, M., Berner, S., Suzuki, H., Yanagi, H., Schlettwein, D., Ivan, S., Baratoff, A., Guentherodt, H.J., Jung, T.A., ChemPhysChem 3, 881 (2002).Google Scholar
Wei, Y., Reutt-Robey, J.E., J. Am. Chem. Soc. 133, 15232 (2011).Google Scholar
Blunt, M.O., Russell, J.C., Gimenez-Lopez, M.d.C., Taleb, N., Lin, X., Schroder, M., Champness, N.R., Beton, P.H., Nat. Chem. 3, 74 (2011).Google Scholar
Cheng, H.L., Lin, J.W., Cryst. Growth Des. 10, 4501 (2010).Google Scholar
Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., Becerril, H.A., Aspuru-Guzik, A., Toney, M.F., Bao, Z., Nature 480, 504 (2011).Google Scholar
Bag, P.P., Patni, M., Reddy, C.M., CrystEngComm 13, 5650 (2011).Google Scholar
Lopez-Mejias, V., Knight, J.L., Brooks, C.L. III, Matzger, A.J., Langmuir 27, 7575 (2011).Google Scholar
Beiner, M., Rengarajan, G.T., Pankaj, S., Enke, D., Steinhart, M., Nano Lett. 7, 1381 (2007).Google Scholar
Mitchell, C.A., Yu, L., Ward, M.D., J. Am. Chem. Soc. 123, 10830 (2001).Google Scholar
Li, R.J., Hu, W.P., Liu, Y.Q., Zhu, D.B., Acc. Chem. Res. 43, 529 (2010).Google Scholar
Menard, E., Meitl, M.A., Sun, Y.G., Park, J.U., Shir, D.J.L., Nam, Y.S., Jeon, S., Rogers, J.A., Chem. Rev. 107, 1117 (2007).Google Scholar
Briseno, A.L., Aizenberg, J., Han, Y.J., Penkala, R.A., Moon, H., Lovinger, A.J., Kloc, C., Bao, Z.N., J. Am. Chem. Soc. 127, 12164 (2005).Google Scholar
Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S.H., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z.N., Nature 444, 913 (2006).Google Scholar
Mannsfeld, S.C.B., Briseno, A.L., Liu, S., Reese, C., Roberts, M.E., Bao, Z., Adv. Funct. Mater. 17, 3545 (2007).Google Scholar
Liu, S., Briseno, A.L., Mannsfeld, S.C.B., You, W., Locklin, J., Lee, H.W., Xia, Y., Bao, Z., Adv. Funct. Mater. 17, 2891 (2007).Google Scholar
Liu, S.H., Mannsfeld, S.C.B., Wang, W.M., Sun, Y.S., Stoltenberg, R.M., Bao, Z.N., Chem. Mater. 21, 15 (2009).Google Scholar
Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., J. Cryst. Growth 187, 449 (1998).Google Scholar
Liu, S.H., Wang, W.C.M., Mannsfeld, S.C.B., Locklin, J., Erk, P., Gomez, M., Richter, F., Bao, Z.N., Langmuir 23, 7428 (2007).Google Scholar
Mannsfeld, S.C.B., Sharei, A., Liu, S.H., Roberts, M.E., McCulloch, I., Heeney, M., Bao, Z.N., Adv. Mater. 20, 4044 (2008).Google Scholar
Akkerman, H.B., Li, H.Y., Bao, Z.N., Org. Electron. 13, 235 (2012).Google Scholar
Qin, D., Xia, Y.N., Whitesides, G.M., Nat. Protoc. 5, 491 (2010).Google Scholar
Siegrist, T., Kloc, C., Laudise, R.A., Katz, H.E., Haddon, R.C., Adv. Mater. 10, 379 (1998).Google Scholar
Kloc, C., Simpkins, P.G., Siegrist, T., Laudise, R.A., J. Cryst. Growth 182, 416 (1997).Google Scholar
Bae, I., Kang, S.J., Shin, Y.J., Park, Y.J., Kim, R.H., Mathevet, F., Park, C., Adv. Mater. 23, 3398 (2011).Google Scholar
Briseno, A.L., Tseng, R.J., Ling, M.M., Falcao, E.H.L., Yang, Y., Wudl, F., Bao, Z.N., Adv. Mater. 18, 2320 (2006).Google Scholar
Lee, H.M., Kim, J.J., Choi, J.H., Cho, S.O., ACS Nano 5, 8352 (2011).Google Scholar
Li, R., Jiang, L., Meng, Q., Gao, J., Li, H., Tang, Q., He, M., Hu, W., Liu, Y., Zhu, D., Adv. Mater. 21, 4492 (2009).Google Scholar
Reese, C., Bao, Z.N., Adv. Mater. 19, 4535 (2007).Google Scholar
He, T., Zhang, X., Jia, J., Li, Y., Tao, X., Adv. Mater. 24, 2171 (2012).Google Scholar
Rogowski, R.Z., Dzwilewski, A., Kemerink, M., Darhuber, A.A., J. Phys. Chem. C 115, 11758 (2011).Google Scholar
Li, L.Q., Gao, P., Schuermann, K.C., Ostendorp, S., Wang, W.C., Du, C.A., Lei, Y., Fuchs, H., De Cola, L., Mullen, K., Chi, L.F., J. Am. Chem. Soc. 132, 8807 (2010).Google Scholar
Becerril, H.A., Roberts, M.E., Liu, Z.H., Locklin, J., Bao, Z.N., Adv. Mater. 20, 2588 (2008).Google Scholar
Liu, Z.H., Becerril, H.A., Roberts, M.E., Nishi, Y., Bao, Z., IEEE Trans. Electron Devices 56, 176 (2009).Google Scholar
Pisula, W., Menon, A., Stepputat, M., Lieberwirth, I., Kolb, U., Tracz, A., Sirringhaus, H., Pakula, T., Mullen, K., Adv. Mater. 17, 684 (2005).Google Scholar
Pisula, W., Tomovic, Z., Stepputat, M., Kolb, U., Pakula, T., Mullen, K., Chem. Mater. 17, 2641 (2005).Google Scholar
Duffy, C.M., Andreasen, J.W., Breiby, D.W., Nielsen, M.M., Ando, M., Minakata, T., Sirringhaus, H., Chem. Mater. 20, 7252 (2008).Google Scholar
Uemura, T., Hirose, Y., Uno, M., Takimiya, K., Takeya, J., Appl. Phys. Express 2, 111501 (2009).Google Scholar
Hong, J.P., Lee, S., Angew. Chem. Int. Ed. 48, 3096 (2009).Google Scholar
Li, H.Y., Tee, B.C.K., Giri, G., Chung, J.W., Lee, S.Y., Bao, Z.N., Adv. Mater. 2588 (2012).Google Scholar
Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Chem. Rev. 112, 2208 (2012).Google Scholar

An addendum has been issued for this article: