Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T21:46:20.939Z Has data issue: false hasContentIssue false

Rotation in age patterns of mortality decline: statistical evidence and modeling

Published online by Cambridge University Press:  09 January 2023

Johnny Siu-Hang Li
Affiliation:
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada. E-mail: shli@uwaterloo.ca
Joseph H.T. Kim
Affiliation:
Department of Statistics and Data Science, Yonsei University, Seoul 120-749, Korea. E-mail: jhtkim@yonsei.ac.kr

Abstract

In the context of mortality forecasting, “rotation” refers to the phenomenon that mortality decline accelerates at older ages but decelerates at younger ages. Since rotation is typically subtle, it is difficult to be confirmed and modeled in a statistical, data-driven manner. In this paper, we attempt to overcome this challenge by proposing an alternative modeling approach. The approach encompasses a new model structure, which includes a component that is devoted to measuring rotation. It also features a modeling technique known as ANCOVA, which allows us to statistically detect rotation and extrapolate the phenomenon into the future. Our proposed approach yields plausible mortality forecasts that are similar to those produced by Li et al. [Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50 (6), 2037–205, and may be considered more advantageous than the approach of Li et al. in the sense that it is able to generate not only static but also stochastic forecasts.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of Forecasting 22(3): 547581.CrossRefGoogle Scholar
Booth, H., Maindonald, J., & Smith, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies 56(3): 325336.CrossRefGoogle ScholarPubMed
Booth, H., Hyndman, R.J., Tickle, L., & De Jong, P. (2006). Lee-Carter mortality forecasting: A multi-country comparison of variants and extensions. Demographic Research 15: 289310.CrossRefGoogle Scholar
Cairns, A.J., Blake, D.P., Kessler, A., & Kessler, M. (2020). The impact of covid-19 on future higher-age mortality. Available at SSRN 3606988.CrossRefGoogle Scholar
Chen, F.-Y., Yang, S.S., & Huang, H.-C. (2022). Modeling pandemic mortality risk and its application to ortality-linked security pricing. Insurance: Mathematics and Economics.106.Google ScholarPubMed
Christensen, K., Doblhammer, G., Rau, R., & Vaupel, J.W. (2009). Ageing populations: The challenges ahead. The Lancet 374(9696): 11961208.CrossRefGoogle ScholarPubMed
Chu, C.C., Chien, H.-K., & Lee, R.D. (2008). Explaining the optimality of U-shaped age-specific mortality. Theoretical Population Biology 73(2): 171180.CrossRefGoogle ScholarPubMed
Coelho, E. & Nunes, L.C. (2011). Forecasting mortality in the event of a structural change. Journal of the Royal Statistical Society: Series A (Statistics in Society) 174(3): 713736.CrossRefGoogle Scholar
Hiam, L., Harrison, D., McKee, M., & Dorling, D. (2018). Why is life expectancy in England and Wales “stalling”? Journal of Epidemiology and Community Health 72(5): 404408.CrossRefGoogle ScholarPubMed
Horiuchi, S. & Wilmoth, J. (1995). Aging of mortality decline. Paper presented at the Annual Meeting of the Population Association of America, San Francisco, California, April 6–8, 1995.Google Scholar
Human Mortality Database (2022). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data downloaded on July 5, 2022).Google Scholar
Kannisto, V., Lauritsen, J., Thatcher, A.R., & Vaupel, J.W. (1994). Reductions in mortality at advanced ages: Several decades of evidence from 27 countries. Population and Development Review 793810.CrossRefGoogle Scholar
Lee, R.D. (1998). Probabilistic approaches to population forecasting. Population and Development Review 24: 156190.CrossRefGoogle Scholar
Lee, R. (2000). The Lee-Carter method for forecasting mortality, with various extensions and applications. North American Actuarial Journal 4(1): 8091.CrossRefGoogle Scholar
Lee, R.D. (2003). Rethinking the evolutionary theory of aging: Transfers, not births, shape senescence in social species. Proceedings of the National Academy of Sciences 100(16): 96379642.CrossRefGoogle Scholar
Lee, R. (2008). Sociality, selection, and survival: Simulated evolution of mortality with intergenerational transfers and food sharing. Proceedings of the National Academy of Sciences 105(20).Google ScholarPubMed
Lee, R.D. & Carter, L.R. (1992). Modeling and forecasting US mortality. Journal of the American statistical association 87(419): 659671.Google Scholar
Lee, R. & Miller, T. (2001). Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38(4): 537549.CrossRefGoogle ScholarPubMed
Lee, R. & Tuljapurkar, S. (1997). Death and taxes: Longer life, consumption, and social security. Demography 34(1): 6781.CrossRefGoogle ScholarPubMed
Lee, R.D. & Tuljapurkar, S. (2000). Population forecasting for fiscal planning: issues and innovations. In A. Auerbach & R. Lee (eds), Population and fiscal policy. Cambridge: Cambridge University Press, pp. 7–57.Google Scholar
Li, J. (2014). A quantitative comparison of simulation strategies for mortality projection. Annals of Actuarial Science 8(2): 281297.CrossRefGoogle Scholar
Li, S.-H. & Chan, W.-S. (2007). The Lee-Carter model for forecasting mortality, revisited. North American Actuarial Journal 11(1): 6889.CrossRefGoogle Scholar
Li, N. & Gerland, P. (2011). Modifying the Lee-Carter method to project mortality changes up to 2100. In Annual Meeting of the Population Association of America.Google Scholar
Li, J.S.-H. & Hardy, M.R. (2011). Measuring basis risk in longevity hedges. North American Actuarial Journal 15(2): 177200.CrossRefGoogle Scholar
Li, N. & Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42(3): 575594.CrossRefGoogle ScholarPubMed
Li, H. & Li, J.S.-H. (2017). Optimizing the Lee-Carter approach in the presence of structural changes in time and age patterns of mortality improvements. Demography 54(3): 10731095.CrossRefGoogle ScholarPubMed
Li, J.S.-H. & Liu, Y. (2020). The heat wave model for constructing two-dimensional mortality improvement scales with measures of uncertainty. Insurance: Mathematics and Economics 93: 126.Google Scholar
Li, J.S.-H. & Liu, Y. (2021). Recent declines in life expectancy: Implication on longevity risk hedging. Insurance: Mathematics and Economics 99: 376394.Google Scholar
Li, Q., Reuser, M., Kraus, C., & Alho, J. (2009). Ageing of a giant: A stochastic population forecast for China, 2006–2060. Journal of Population Research 26(1): 21.CrossRefGoogle Scholar
Li, J.S.-H., Hardy, M.R., & Tan, K.S. (2009). Uncertainty in mortality forecasting: An extension to the classical Lee-Carter approach. ASTIN Bulletin: The Journal of the IAA 39(1): 137164.CrossRefGoogle Scholar
Li, N., Lee, R., & Gerland, P. (2013). Extending the Lee-Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50(6): 20372051.CrossRefGoogle ScholarPubMed
Li, J.S.-H., Zhou, R., & Hardy, M. (2015). A step-by-step guide to building two-population stochastic mortality models. Insurance: Mathematics and Economics 63: 121134.Google Scholar
Liu, Y. & Li, J.S.-H. (2017). The locally linear Cairns–Blake–Dowd model: A note on Delta–Nuga hedging of longevity risk. ASTIN Bulletin: The Journal of the IAA 47(1): 79151.CrossRefGoogle Scholar
Miller, T. (2001). Increasing longevity and medicare expenditures. Demography 38(2): 215226.CrossRefGoogle ScholarPubMed
Parr, N., Li, J., & Tickle, L. (2016). A cost of living longer: Projections of the effects of prospective mortality improvement on economic support ratios for 14 advanced economies. Population Studies 70(2): 181200.CrossRefGoogle ScholarPubMed
Rau, R., Soroko, E., Jasilionis, D., & Vaupel, J.W. (2008). Continued reductions in mortality at advanced ages. Population and Development Review 34(4): 747768.CrossRefGoogle Scholar
Renshaw, A.E. & Haberman, S. (2003). Lee-Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics 33(2): 255272.Google Scholar
Richards, S.J., Currie, I.D., Kleinow, T., & Ritchie, G.P. (2019). A stochastic implementation of the APCI model for mortality projections. British Actuarial Journal 24: 126.CrossRefGoogle Scholar
Tuljapurkar, S. (2005). Future mortality: A bumpy road to Shangri-La? Science 2005(14): pe9.Google ScholarPubMed
Van Berkum, F., Antonio, K., & Vellekoop, M. (2016). The impact of multiple structural changes on mortality predictions. Scandinavian Actuarial Journal 2016(7): 581603.CrossRefGoogle Scholar
Vékás, P. (2020). Rotation of the age pattern of mortality improvements in the European union. Central European Journal of Operations Research 28(3): 10311048.CrossRefGoogle Scholar
White, K.M. (2002). Longevity advances in high-income countries, 1955–1996. Population and Development Review 28(1): 5976.CrossRefGoogle Scholar
Wilmoth, J.R. (1993). Computational methods for fitting and extrapolating the Lee-Carter model of mortality change. Technical Report, Department of Demography, University of California, Berkeley.Google Scholar
Wilson, C. (2001). On the scale of global demographic convergence 1950–2000. Population and Development Review 27(1): 155171.CrossRefGoogle ScholarPubMed
Wilson, T. & Rees, P. (2005). Recent developments in population projection methodology: A review. Population, Space and Place 11(5): 337360.CrossRefGoogle Scholar
Woolf, S.H. & Schoomaker, H. (2019). Life expectancy and mortality rates in the United States, 1959–2017. JAMA 322(20): 19962016.CrossRefGoogle ScholarPubMed
Zhou, R. & Li, J.S.-H. (2021). A multi-parameter-level model for simulating future mortality scenarios with Covid-alike effects. Annals of Actuarial Science 16(3): 125.Google Scholar
Zhou, R., Wang, Y., Kaufhold, K., Li, J.S.-H., & Tan, K.S. (2014). Modeling period effects in multi-population mortality models: Applications to Solvency II. North American Actuarial Journal 18(1): 150167.CrossRefGoogle Scholar