Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-25T16:51:29.207Z Has data issue: false hasContentIssue false

Effects of fibrolytic and amylolytic compound enzyme preparation on rumen fermentation, serum parameters and production performance in primiparous early-lactation dairy cows

Published online by Cambridge University Press:  14 October 2024

Zhaokun Liu
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
Wen Li
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Congcong Zhao
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Yuanjie Zhang
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Yong Li
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Lamei Wang
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
XiaoYong Li
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Junhu Yao
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
Wilbert F. Pellikaan
Affiliation:
Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
Yangchun Cao*
Affiliation:
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
*
Corresponding author: Yangchun Cao; Email: caoyangchun@126.com

Abstract

This research communication reports the effects of a compound enzyme preparation consisting of fibrolytic (cellulase 3500 CU/g, xylanase 2000 XU/g, β-glucanase 17 500 GU/g) and amylolytic (amylase 37 000 AU/g) enzymes on nutrient intake, rumen fermentation, serum parameters and production performance in primiparous early-lactation (47 ± 2 d) dairy cows. Twenty Holstein–Friesian cows in similar body condition scores were randomly divided into control (CON, n = 10) and experimental (EXP, n = 10) groups in a completely randomized single-factor design. CON was fed a basal total mixed ration diet and EXP was dietary supplemented with compound enzyme preparation at 70 g/cow/d. The experiment lasted 4 weeks, with 3 weeks for adaptation and then 1 week for measurement. Enzyme supplementation significantly increased diet non-fibrous carbohydrates (NFC) content as well as dry matter intake (DMI) and NFC intake (P < 0.05). EXP had increased ruminal butyrate and isobutyrate percentages (P < 0.01) but decreased propionate and valerate percentages (P < 0.05), as well as increased serum alkaline phosphatase activity and albumin concentration (P ≤ 0.01). Additionally, EXP had increased milk yield (0.97 kg/d), 4% fat corrected milk yield and energy corrected milk yield, as well as milk fat and protein yield (P < 0.01). In conclusion, dietary supplementation with a fibrolytic and amylolytic compound enzyme preparation increased diet NFC content, DMI and NFC intake, affected rumen fermentation by increasing butyrate proportion at the expense of propionate, and enhanced milk performance in primiparous early-lactation dairy cows.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adesogan, AT (2005) Improving forage quality and animal performance with fibrolytic enzymes. Florida Ruminant Nutrition Symposium, 91109. https://animal.ifas.ufl.edu/apps/dairymedia/rns/2005/Adesogan.pdfGoogle Scholar
Adesogan, A, Arriola, K, Jiang, Y, Oyebade, A, Paula, E, Pech-Cervantes, A, Romero, J, Ferraretto, L and Vyas, D (2019) Symposium review: technologies for improving fiber utilization. Journal of Dairy Science 102, 57265755.CrossRefGoogle ScholarPubMed
Andreazzi, AS, Pereira, MN, Reis, RB, Pereira, RA, Júnior, NNM, Acedo, TS, Hermes, RG and Cortinhas, CS (2018) Effect of exogenous amylase on lactation performance of dairy cows fed a high-starch diet. Journal of Dairy Science 101, 71997207.CrossRefGoogle ScholarPubMed
Arriola, KG, Oliveira, AS, Ma, ZX, Lean, IJ, Giurcanu, MC and Adesogan, AT (2017) A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. Journal of Dairy Science 100, 45134527.CrossRefGoogle ScholarPubMed
Bachmann, M, Bochnia, M, Mielenz, N, Spilke, J, Souffrant, WB, Azem, E, Schliffka, W and Zeyner, A (2018) Impact of α-amylase supplementation on energy balance and performance of high-yielding dairy cows on moderate starch feeding. Animal Science Journal 89, 367376.CrossRefGoogle ScholarPubMed
Beauchemin, K, Colombatto, D, Morgavi, D and Yang, W (2003) Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science 81, E37E47.Google Scholar
Cozzi, G, Ravarotto, L, Gottardo, F, Stefani, A, Contiero, B, Moro, L, Brscic, M and Dalvit, P (2011) Reference values for blood parameters in Holstein dairy cows: effects of parity, stage of lactation, and season of production. Journal of Dairy Science 94, 38953901.CrossRefGoogle ScholarPubMed
Hristov, AN, Basel, C, Melgar, A, Foley, A, Ropp, J, Hunt, C and Tricarico, J (2008) Effect of exogenous polysaccharide-degrading enzyme preparations on ruminal fermentation and digestibility of nutrients in dairy cows. Animal Feed Science and Technology 145, 182193.CrossRefGoogle Scholar
Lager, K and Jordan, E (2012) The metabolic profile for the modern transition dairy cow. Proc. Mid-South Ruminant Nutrition Conference, 916. https://www.txanc.org/Proceedings/2012/2_Lager_The-Metabolic-Profile-for-the-Modern-Transition-Dairy-Cow_2012-MSRNC_FINAL.pdfGoogle Scholar
Murad, H and Azzaz, H (2010) Cellulase and dairy animal feeding. Biotechnology (Reading, Mass.) 9, 238256.Google Scholar
Noziere, P, Steinberg, W, Silberberg, M and Morgavi, DP (2014) Amylase addition increases starch ruminal digestion in first-lactation cows fed high and low starch diets. Journal of Dairy Science 97, 23192328.CrossRefGoogle ScholarPubMed
Romero, J, Ma, Z, Gonzalez, C and Adesogan, A (2015) Effect of adding cofactors to exogenous fibrolytic enzymes on preingestive hydrolysis, in vitro digestibility, and fermentation of bermudagrass haylage. Journal of Dairy Science 98, 46594672.CrossRefGoogle ScholarPubMed
Seymour, W, Campbell, D and Johnson, Z (2005) Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study. Animal Feed Science and Technology 119, 155169.CrossRefGoogle Scholar
Tirado-González, DN, Miranda-Romero, LA, Ruíz-Flores, A, Medina-Cuéllar, SE, Ramírez-Valverde, R and Tirado-Estrada, G (2018) Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. Journal of Applied Animal Research 46, 771783.CrossRefGoogle Scholar
Tricarico, JM, Johnston, JD, Dawson, KA, Hanson, KC, Mcleod, KR and Harmon, DL (2005) The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Animal Science 81, 365374.CrossRefGoogle Scholar
Tricarico, JM, Johnston, JD and Dawson, KA (2008) Dietary supplementation of ruminant diets with an Aspergillus oryzae α-amylase. Animal Feed Science and Technology 145, 136150.CrossRefGoogle Scholar
Wathes, DC, Cheng, Z, Bourne, N, Taylor, VJ, Coffey, MP and Brotherstone, S (2007) Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domestic Animal Endocrinology 33, 203225.CrossRefGoogle ScholarPubMed
Yang, W, Beauchemin, K and Rode, L (2000) A comparison of methods of adding fibrolytic enzymes to lactating cow diets. Journal of Dairy Science 83, 25122520.CrossRefGoogle ScholarPubMed
Zilio, EM, Del Valle, TA, Ghizzi, LG, Takiya, CS, Dias, MS, Nunes, AT, Silva, GG and Rennó, FP (2019) Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. Journal of Dairy Science 102, 41794189.CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 245 KB