Published online by Cambridge University Press: 09 May 2024
The purpose of this study was to explore the electroencephalogram (EEG) features sensitive to situation awareness (SA) and then classify SA levels. Forty-eight participants were recruited to complete an SA standard test based on the multi-attribute task battery (MATB) II, and the corresponding EEG data and situation awareness global assessment technology (SAGAT) scores were recorded. The population with the top 25% of SAGAT scores was selected as the high-SA level (HSL) group, and the bottom 25% was the low-SA level (LSL) group. The results showed that (1) for the relative power of $\beta$1 (16–20Hz),
$\beta$2 (20–24Hz) and
$\beta$3 (24–30Hz), repeated measures analysis of variance (ANOVA) in three brain regions (Central Central-Parietal, and Parietal) × three brain lateralities (left, midline, and right) × two SA groups (HSL and LSL) showed a significant main effect for SA groups; post hoc comparisons revealed that compared with LSL, the above features of HSL were higher. (2) for most ratio features associated with
$\beta$1 ∼
$\beta$3, ANOVA also revealed a main effect for SA groups. (3) EEG features sensitive to SA were selected to classify SA levels with small-sample data based on the general supervised machine learning classifiers. Five-fold cross-validation results showed that among the models with easy interpretability, logistic regression (LR) and decision tree (DT) presented the highest accuracy (both 92%), while among the models with hard interpretability, the accuracy of random forest (RF) was 88.8%, followed by an artificial neural network (ANN) of 84%. The above results suggested that (1) the relative power of
$\beta$1 ∼
$\beta$3 and their associated ratios were sensitive to changes in SA levels; (2) the general supervised machine learning models all exhibited good accuracy (greater than 75%); and (3) furthermore, LR and DT are recommended by combining the interpretability and accuracy of the models.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.