Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T08:55:43.575Z Has data issue: false hasContentIssue false

Atomic molecular dynamics simulation advances of de novo-designed proteins

Published online by Cambridge University Press:  05 December 2024

Moye Wang
Affiliation:
Research Department, PLA Strategic Support Force Medical Center, Beijing, China
Anqi Ma
Affiliation:
Research Department, PLA Strategic Support Force Medical Center, Beijing, China
Hongjiang Wang*
Affiliation:
Research Department, PLA Strategic Support Force Medical Center, Beijing, China
Xiaotong Lou*
Affiliation:
Research Department, PLA Strategic Support Force Medical Center, Beijing, China
*
Corresponding authors: Hongjiang Wang and Xiaotong Lou; Emails: wujiang_0706@163.com; louxt@sina.com
Corresponding authors: Hongjiang Wang and Xiaotong Lou; Emails: wujiang_0706@163.com; louxt@sina.com

Abstract

Proteins are vital biological macromolecules that execute biological functions and form the core of synthetic biological systems. The history of de novo protein has evolved from initial successes in subordinate structural design to more intricate protein creation, challenging the complexities of natural proteins. Recent strides in protein design have leveraged computational methods to craft proteins for functions beyond their natural capabilities. Molecular dynamics (MD) simulations have emerged as a crucial tool for comprehending the structural and dynamic properties of de novo-designed proteins. In this study, we examined the pivotal role of MD simulations in elucidating the sampling methods, force field, water models, stability, and dynamics of de novo-designed proteins, highlighting their potential applications in diverse fields. The synergy between computational modeling and experimental validation continued to play a crucial role in the creation of novel proteins tailored for specific functions and applications.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahamad, S, Gupta, D and Kumar, V (2022) Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 40(6), 24302443. http://doi.org/10.1080/07391102.2020.1839563.CrossRefGoogle ScholarPubMed
Anfinsen, CB, Haber, E, Sela, M and White, FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the National Academy of Sciences of U S A, 47(9), 13091314. http://doi.org/10.1073/pnas.47.9.1309.CrossRefGoogle ScholarPubMed
Barros, EP, Schiffer, JM, Vorobieva, A, Dou, J, Baker, D and Amaro, RE (2019) Improving the efficiency of ligand-binding protein design with molecular dynamics simulations. Journal of Chemical Theory and Computation 15(10), 57035715. http://doi.org/10.1021/acs.jctc.9b00483.CrossRefGoogle ScholarPubMed
Bernardi, RC, Melo, MCR and Schulten, K(2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta 1850(5), 872877. http://doi.org/10.1016/j.bbagen.2014.10.019.CrossRefGoogle ScholarPubMed
Best, RB, Buchete, NV and Hummer, G.(2008) Are current molecular dynamics force fields too helical? Biophysical Journal 95(1), L0709. http://doi.org/10.1529/biophysj.108.132696.CrossRefGoogle ScholarPubMed
Blanco, FJ, Rivas, G and Serrano, L (1994) A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nature Structural Biology 1(9), 584590. http://doi.org/10.1038/nsb0994-584.CrossRefGoogle Scholar
Boschek, CB, Apiyo, DO, Soares, TA, Engelmann, HE, Pefaur, NB, Straatsma, TP and Baird, CL (2009) Engineering an ultra-stable affinity reagent based on Top7. Protein Engineering, Design and Selection 22(5), 325332. http://doi.org/10.1093/protein/gzp007.CrossRefGoogle ScholarPubMed
Brooks, BR, Bruccoleri, RE, Olafson, BD, States, DJ, Swaminathan, S and Karplus, M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4. https://doi.org/10.1002/jcc.540040211.CrossRefGoogle Scholar
Cao, L, Goreshnik, I, Coventry, B, Case, JB, Miller, L, Kozodoy, L, Chen, RE, Carter, L, Walls, AC, Park, YJ, Strauch, EM, Stewart, L, Diamond, MS, Veesler, D and Baker, D (2020) De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science 370(6515), 426431.http://doi.org/10.1126/science.abd9909.CrossRefGoogle ScholarPubMed
Chen, C, Xiao, Y and Huang, Y (2015) Improving the replica-exchange molecular-dynamics method for efficient sampling in the temperature space. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 91(5), 052708.http://doi.org/10.1103/PhysRevE.91.052708.CrossRefGoogle ScholarPubMed
Chen, CH, Melo, MC, Berglund, N, Khan, A, de la Fuente-Nunez, C, Ulmschneider, JP and Ulmschneider, MB (2020) Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly. Current Opinion in Structural Biology 61, 160166.http://doi.org/10.1016/j.sbi.2019.12.021.CrossRefGoogle ScholarPubMed
Chen, CH, Starr, CG, Troendle, E, Wiedman, G, Wimley, WC, Ulmschneider, JP and Ulmschneider, MB (2019) Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. Journal of the American Chemical Society 141(12), 48394848.http://doi.org/10.1021/jacs.8b11939.CrossRefGoogle ScholarPubMed
Collier, TA, Piggot, TJ and Allison, JR (2020) Molecular dynamics simulation of proteins. Methods in Molecular Biology 2073, 311327.http://doi.org/10.1007/978-1-4939-9869-2_17.CrossRefGoogle ScholarPubMed
Correia, BE, Bates, JT, Loomis, RJ, Baneyx, G, Carrico, C, Jardine, JG, Rupert, P, Correnti, C, Kalyuzhniy, O, Vittal, V, Connell, MJ, Stevens, E, Schroeter, A, Chen, M, Macpherson, S, Serra, AM, Adachi, Y, Holmes, MA, Li, Y, Klevit, RE, Graham, BS, Wyatt, RT, Baker, D, Strong, RK, Crowe, JE Jr., Johnson, PR and Schief, WR (2014) Proof of principle for epitope-focused vaccine design. Nature 507(7491), 201206.http://doi.org/10.1038/nature12966.CrossRefGoogle ScholarPubMed
Dahiyat, BI and Mayo, SL (1997) De novo protein design: Fully automated sequence selection. Science 278(5335), 8287.http://doi.org/10.1126/science.278.5335.82.CrossRefGoogle ScholarPubMed
Dill, KA and Chan, HS (1997) From Levinthal to pathways to funnels. Nature Structural Biology 4(1), 1019.http://doi.org/10.1038/nsb0197-10.CrossRefGoogle ScholarPubMed
Dill, KA and MacCallum, JL (2012) The protein-folding problem, 50 years on. Science 338(6110), 10421046.http://doi.org/10.1126/science.1219021.CrossRefGoogle Scholar
Ding, Y, Yu, K and Huang, J (2023) Data science techniques in biomolecular force field development. Current Opinion in Structural Biology, 78, 102502.http://doi.org/10.1016/j.sbi.2022.102502.CrossRefGoogle ScholarPubMed
Dix, J, Lue, L and Carbone, P (2018) Why different water models predict different structures under 2D confinement. Journal of Computational Chemistry 39(25), 20512059.http://doi.org/10.1002/jcc.25369.CrossRefGoogle ScholarPubMed
Döpke, MF, Moultos, OA and Hartkamp, R (2020) On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations. The Journal of Chemical Physics 152(2), 024501.http://doi.org/10.1063/1.5124448.CrossRefGoogle Scholar
Giberti, F, Salvalaglio, M and Parrinello, M (2015) Metadynamics studies of crystal nucleation. IUCrJ 2(Pt 2), 256266.http://doi.org/10.1107/s2052252514027626.CrossRefGoogle ScholarPubMed
Gonzalez, NA, Li, BA and McCully, ME (2022) The stability and dynamics of computationally designed proteins. Protein Engineering, Design and Selection 35. http://doi.org/10.1093/protein/gzac001.CrossRefGoogle ScholarPubMed
Harder, ED, Damm, W, Maple, JR, Wu, C, Reboul, M, Xiang, JY, Wang, L, Lupyan, D, Dahlgren, MK, Knight, JL, Kaus, JW, Cerutti, DS, Krilov, G, Jorgensen, WL, Abel, R and Friesner, RA (2016) OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation 12 1, 281296. http://doi.org/10.1021/acs.jctc.5b00864CrossRefGoogle ScholarPubMed
Hecht, MH, Richardson, JS, Richardson, DC and Ogden, RC (1990) De novo design, expression, and characterization of Felix: A four-helix bundle protein of native-like sequence. Science 249(4971), 884891.http://doi.org/10.1126/science.2392678.CrossRefGoogle Scholar
Homans, SW (1990) A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry 29(39), 91109118.http://doi.org/10.1021/bi00491a003.CrossRefGoogle ScholarPubMed
Huang, J, Rauscher, S, Nawrocki, G, Ran, T, Feig, M, de Groot, BL, Grubmüller, H and MacKerell, AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14(1), 7173.http://doi.org/10.1038/nmeth.4067.CrossRefGoogle ScholarPubMed
Huang, PS, Feldmeier, K, Parmeggiani, F, Velasco, DAF, Höcker, B and Baker, D (2016) De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature Chemical Biology 12(1), 2934.http://doi.org/10.1038/nchembio.1966.CrossRefGoogle ScholarPubMed
Hwang, SB, Lee, CJ, Lee, S, Ma, S, Kang, YM, Cho, KH, Kim, SY, Kwon, OY, Yoon, CN, Kang, YK, Yoon, JH, Nam, KY, Kim, SG, In, Y, Chai, HH, Acree, WE Jr., Grant, JA, Gibson, KD, Jhon, MS, Scheraga, HA and No, KT (2020) PMFF: Development of a physics-based molecular force field for protein simulation and ligand docking. The Journal of Physical Chemistry B, 124(6), 974989.http://doi.org/10.1021/acs.jpcb.9b10339.CrossRefGoogle ScholarPubMed
Jespers, W, Åqvist, J and Gutiérrez-de-Terán, H (2021) free energy calculations for protein-ligand binding prediction. Methods in Molecular Biology 2266, 203226.http://doi.org/10.1007/978-1-0716-1209-5_12.CrossRefGoogle ScholarPubMed
Kamberaj, H (2018) Faster protein folding using enhanced conformational sampling of molecular dynamics simulation. Journal of Molecular Graphics and Modelling 81, 3249.http://doi.org/10.1016/j.jmgm.2018.02.008.CrossRefGoogle ScholarPubMed
Korendovych, IV and DeGrado, WF (2020) De novo protein design, a retrospective. Quarterly Reviews of Biophysics 53, e3.http://doi.org/10.1017/s0033583519000131.CrossRefGoogle ScholarPubMed
Kratochvil, HT, Watkins, LC, Mravic, M, Thomaston, JL, Nicoludis, JM, Somberg, NH, Liu, L, Hong, M, Voth, GA and DeGrado, WF (2023) Transient water wires mediate selective proton transport in designed channel proteins. Nature Chemistry 15(7), 10121021.http://doi.org/10.1038/s41557-023-01210-4.CrossRefGoogle ScholarPubMed
Kuhlman, B and Baker, D (2004) Exploring folding free energy landscapes using computational protein design. Current Opinion in Structural Biology 14(1), 8995.http://doi.org/10.1016/j.sbi.2004.01.002.CrossRefGoogle ScholarPubMed
Kuhlman, B, Dantas, G, Ireton, GC, Varani, G, Stoddard, BL and Baker, D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649), 13641368.http://doi.org/10.1126/science.1089427.CrossRefGoogle ScholarPubMed
Kumar, S and Deshpande, PA (2021) Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA. PLoS One 16(4), e0249866.http://doi.org/10.1371/journal.pone.0249866.CrossRefGoogle ScholarPubMed
Latour, RA (2014) Perspectives on the simulation of protein-surface interactions using empirical force field methods. Colloids and Surfaces B Biointerfaces 124, 2537.http://doi.org/10.1016/j.colsurfb.2014.06.050.CrossRefGoogle ScholarPubMed
Lazim, R, Mei, Y and Zhang, D (2012) Replica exchange molecular dynamics simulation of structure variation from α/4β-fold to 3α-fold protein. Journal of Molecular Modeling 18(3), 10871095.http://doi.org/10.1007/s00894-011-1147-8.CrossRefGoogle ScholarPubMed
Lazim, R, Suh, D and Choi, S (2020) Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. International Journal of Molecular Sciences, 21(17).http://doi.org/10.3390/ijms21176339.CrossRefGoogle Scholar
Leong, SW, Lim, TS, Ismail, A and Choong, YS (2018) Integration of molecular dynamics simulation and hotspot residues grafting for de novo scFv design against Salmonella Typhi TolC protein. Journal of Molecular Recognition 31(5), e2695.http://doi.org/10.1002/jmr.2695.CrossRefGoogle Scholar
Leopold, PE, Montal, M and Onuchic, JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 87218725.http://doi.org/10.1073/pnas.89.18.8721.CrossRefGoogle Scholar
Li, X, Yang, Z, Chen, Y, Zhang, S, Wei, G and Zhang, L (2023) Dissecting the molecular mechanisms of the co-aggregation of Aβ40 and Aβ42 peptides: A REMD simulation study. The Journal of Physical Chemistry B 127(18), 40504060.http://doi.org/10.1021/acs.jpcb.3c01078.CrossRefGoogle ScholarPubMed
Lin, FY, Huang, J, Pandey, P, Rupakheti, C, Li, J, Roux, BT and MacKerell, AD Jr (2020) Further optimization and validation of the classical drude polarizable protein force field. Journal of Chemical Theory and Computation 16(5), 32213239.http://doi.org/10.1021/acs.jctc.0c00057.CrossRefGoogle ScholarPubMed
Lindorff-Larsen, K, Piana, S, Palmo, K, Maragakis, P, Klepeis, JL, Dror, RO and Shaw, DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8), 19501958.http://doi.org/10.1002/prot.22711.CrossRefGoogle ScholarPubMed
Lopes, PE, Guvench, O and MacKerell, AD Jr (2015) Current status of protein force fields for molecular dynamics simulations. Methods in Molecular Biology 1215, 4771.http://doi.org/10.1007/978-1-4939-1465-4_3.CrossRefGoogle ScholarPubMed
Lu, L, Gou, X, Tan, SK, Mann, SI, Yang, H, Zhong, X, Gazgalis, D, Valdiviezo, J, Jo, H, Wu, Y, Diolaiti, ME, Ashworth, A, Polizzi, NF and DeGrado, WF (2023) De novo design of drug-binding proteins with predictable binding energy and specificity. bioRxiv. http://doi.org/10.1101/2023.12.23.573178.CrossRefGoogle Scholar
Maier, JA, Martinez, C, Kasavajhala, K, Wickstrom, L, Hauser, KE and Simmerling, C (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation 11(8), 36963713.http://doi.org/10.1021/acs.jctc.5b00255.CrossRefGoogle ScholarPubMed
Marcandalli, J, Fiala, B, Ols, S, Perotti, M, de van der Schueren, W, Snijder, J, Hodge, E, Benhaim, M, Ravichandran, R, Carter, L, Sheffler, W, Brunner, L, Lawrenz, M, Dubois, P, Lanzavecchia, A, Sallusto, F, Lee, KK, Veesler, D, Correnti, CE, Stewart, LJ, Baker, D, Loré, K, Perez, L and King, NP (2019) Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176(6), 14201431.e1417.http://doi.org/10.1016/j.cell.2019.01.046.CrossRefGoogle ScholarPubMed
Marcisz, M, Maszota-Zieleniak, M, Huard, B and Samsonov, SA (2021) Advanced molecular dynamics approaches to model a tertiary complex APRIL/TACI with Long glycosaminoglycans. Biomolecules 11(9).http://doi.org/10.3390/biom11091349.CrossRefGoogle Scholar
Marsh, JA and Teichmann, SA (2015) Structure, dynamics, assembly, and evolution of protein complexes. Annual Review of Biochemistry 84, 551575.http://doi.org/10.1146/annurev-biochem-060614-034142.CrossRefGoogle ScholarPubMed
Missimer, JH, Steinmetz, MO, Baron, R, Winkler, FK, Kammerer, RA, Daura, X and van Gunsteren, WF (2007) Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Science 16(7), 13491359.http://doi.org/10.1110/ps.062542907.CrossRefGoogle ScholarPubMed
Mravic, M, Thomaston, JL, Tucker, M, Solomon, PE, Liu, L and DeGrado, WF (2019) Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363(6434), 14181423.http://doi.org/10.1126/science.aav7541.CrossRefGoogle ScholarPubMed
Negron, C, Fufezan, C and Koder, RL (2009) Geometric constraints for porphyrin binding in helical protein binding sites. Proteins 74(2), 400416.http://doi.org/10.1002/prot.22143.CrossRefGoogle ScholarPubMed
Niitsu, A and Sugita, Y. (2023). Towards de novo design of transmembrane α-helical assemblies using structural modelling and molecular dynamics simulation. Phys Chem Chem Phys, 25(5), 35953606.http://doi.org/10.1039/d2cp03972a.CrossRefGoogle ScholarPubMed
Ostermeir, K and Zacharias, M (2013) Advanced replica-exchange sampling to study the flexibility and plasticity of peptides and proteins. Biochimica et Biophysica Acta, 1834(5), 847853.http://doi.org/10.1016/j.bbapap.2012.12.016.CrossRefGoogle Scholar
Park, C, Robinson, F and Kim, D (2022) On the choice of different water model in molecular dynamics simulations of nanopore transport phenomena. Membranes (Basel) 12(11).http://doi.org/10.3390/membranes12111109.Google ScholarPubMed
Patel, SC, Bradley, LH, Jinadasa, SP and Hecht, MH (2009) Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins. Protein Science 18(7), 13881400.http://doi.org/10.1002/pro.147.CrossRefGoogle Scholar
Peng, C, Wang, J, Shi, Y, Xu, Z and Zhu, W (2021) Increasing the sampling efficiency of protein conformational change by combining a modified replica exchange molecular dynamics and normal mode analysis. Journal of Chemical Theory and Computation, 17(1), 1328.http://doi.org/10.1021/acs.jctc.0c00592.CrossRefGoogle ScholarPubMed
Piana, S, Klepeis, JL and Shaw, DE. (2014). Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Current Opinion in Structural Biology 24, 98105.http://doi.org/10.1016/j.sbi.2013.12.006.CrossRefGoogle ScholarPubMed
Piana, S, Lindorff-Larsen, K and Shaw, DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophysical Journal 100(9), L47L49.http://doi.org/10.1016/j.bpj.2011.03.051.CrossRefGoogle ScholarPubMed
Pourjafar-Dehkordi, D and Zacharias, M (2021) Influence of a Ser111-phosphorylation on Rab1b GTPase conformational dynamics studied by advanced sampling simulations. Proteins 89(10), 13241332.http://doi.org/10.1002/prot.26153.CrossRefGoogle ScholarPubMed
Rahban, M, Salehi, N, Saboury, AA, Hosseinkhani, S, Karimi-Jafari, MH, Firouzi, R, Rezaei-Ghaleh, N and Moosavi-Movahedi, AA (2017) Histidine substitution in the most flexible fragments of firefly luciferase modifies its thermal stability. Archives of Biochemistry and Biophysics 629, 818.http://doi.org/10.1016/j.abb.2017.07.003.CrossRefGoogle ScholarPubMed
Regan, L and DeGrado, WF (1988) Characterization of a helical protein designed from first principles. Science 241(4868), 976978.http://doi.org/10.1126/science.3043666.CrossRefGoogle ScholarPubMed
Robertson, MJ, Tirado-Rives, J and Jorgensen, WL (2015) Improved peptide and protein torsional energetics with the OPLSAA force field. Journal of Chemical Theory and Computation 11(7), 34993509.http://doi.org/10.1021/acs.jctc.5b00356.CrossRefGoogle ScholarPubMed
Robustelli, P, Piana, S and Shaw, DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences of the United States of America, 115(21), E4758e4766.http://doi.org/10.1073/pnas.1800690115.Google ScholarPubMed
Rosta, E and Hummer, G (2009) Error and efficiency of replica exchange molecular dynamics simulations. The Journal of Chemical Physics 131(16), 165102.http://doi.org/10.1063/1.3249608.CrossRefGoogle ScholarPubMed
Sesterhenn, F, Yang, C, Bonet, J, Cramer, JT, Wen, X, Wang, Y, Chiang, CI, Abriata, LA, Kucharska, I, Castoro, G, Vollers, SS, Galloux, M, Dheilly, E, Rosset, S, Corthésy, P, Georgeon, S, Villard, M, Richard, CA, Descamps, D, Delgado, T, Oricchio, E, Rameix-Welti, MA, Más, V, Ervin, S, Eléouët, JF, Riffault, S, Bates, JT, Julien, JP, Li, Y, Jardetzky, T, Krey, T and Correia, BE (2020) De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368(6492).http://doi.org/10.1126/science.aay5051.CrossRefGoogle ScholarPubMed
Silva, DA, Yu, S, Ulge, UY, Spangler, JB, Jude, KM, Labão-Almeida, C, Ali, LR, Quijano-Rubio, A, Ruterbusch, M, Leung, I, Biary, T, Crowley, SJ, Marcos, E, Walkey, CD, Weitzner, BD, Pardo-Avila, F, Castellanos, J, Carter, L, Stewart, L, Riddell, SR, Pepper, M, Bernardes, GJL, Dougan, M, Garcia, KC and Baker, D (2019) De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565(7738), 186191.http://doi.org/10.1038/s41586-018-0830-7.CrossRefGoogle ScholarPubMed
Soares, TA, Boschek, CB, Apiyo, D, Baird, C and Straatsma, TP (2010) Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. Journal of Molecular Graphics and Modelling 28(8), 755765.http://doi.org/10.1016/j.jmgm.2010.01.013.CrossRefGoogle ScholarPubMed
Su, J, Sun, T, Wang, Y and Shen, Y (2022) Conformational dynamics of glucagon-like Peptide-2 with different electric field. Polymers (Basel) 14(13).http://doi.org/10.3390/polym14132722.CrossRefGoogle ScholarPubMed
Sugita, Y, Kamiya, M, Oshima, H and Re, S (2019) replica-exchange methods for biomolecular simulations. Methods in Molecular Biology 2022, 155177.http://doi.org/10.1007/978-1-4939-9608-7_7.CrossRefGoogle ScholarPubMed
Uversky, VN (2013) Intrinsic disorder-based protein interactions and their modulators. Current Pharmaceutical Design 19(23), 41914213.http://doi.org/10.2174/1381612811319230005.CrossRefGoogle ScholarPubMed
Wang, JM, Cieplak, P and Kollman, P (1999) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049.http://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F.3.0.CO;2-F>CrossRefGoogle Scholar
Wang, M, Hu, J and Zhang, Z (2016) The folding of de novo designed protein DS119 via molecular dynamics simulations. International Journal of Molecular Sciences 17(5).http://doi.org/10.3390/ijms17050612.Google Scholar
Wang, W (2021) Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Physical Chemistry Chemical Physics 23(2), 777784.http://doi.org/10.1039/d0cp05818a.CrossRefGoogle ScholarPubMed
Wannier, TM, Moore, MM, Mou, Y and Mayo, SL (2015) Computational design of the β-Sheet surface of a red fluorescent protein allows control of protein oligomerization. PLoS One, 10(6), e0130582.http://doi.org/10.1371/journal.pone.0130582.CrossRefGoogle ScholarPubMed
Weiner, SJ, Kollman, PA, Case, DA, Singh, UC, Ghio, C, Alagona, G, Profeta, S and Weiner, P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society 106(3), 765784.http://doi.org/10.1021/ja00315a051.CrossRefGoogle Scholar
Zhang, W and Wang, T (2023) Understanding protein functions in the biological context. Protein & Peptide Letters, 30(6), 449458.http://doi.org/10.2174/0929866530666230507212638.Google ScholarPubMed
Zhou, CY, Jiang, F and Wu, YD. (2015) Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. The Journal of Physical Chemistry B 119(3), 10351047.http://doi.org/10.1021/jp5064676.CrossRefGoogle ScholarPubMed
Zhou, R (2007) Replica exchange molecular dynamics method for protein folding simulation. Methods in Molecular Biology 350, 205223.http://doi.org/10.1385/1-59745-189-4:205.Google ScholarPubMed
Zhu, C, Dai, Z, Liang, H, Zhang, T, Gai, F and Lai, L (2013) Slow and bimolecular folding of a de novo designed monomeric protein DS119. Biophysical Journal 105(9), 21412148.http://doi.org/10.1016/j.bpj.2013.09.014.CrossRefGoogle Scholar
Zhu, J, Avakyan, N, Kakkis, A, Hoffnagle, AM, Han, K, Li, Y, Zhang, Z, Choi, TS, Na, Y, Yu, CJ and Tezcan, FA (2021) Protein assembly by design. Chemical Reviews 121(22), 1370113796.http://doi.org/10.1021/acs.chemrev.1c00308.CrossRefGoogle ScholarPubMed